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ELEMENTS OF ALGEBRA,

Preliminary Remarks upon the Transition from Arithmetic to Alge-
bra—Ezxplanation and Use of Algebraic Signs.

1. It must have been remarked in the Elementary Treatise of
Arithmetic, that there are many questions, the solution of which
is composed of two parts; the one having for its object to find
to which of the four fundamental rules the determination of the
unknown number by means of the numbers given belongs, and
the other the application of these rules. The first part, inde-
pendent of the manner of writing numbers, or of the system of
notation, consists entirely in the developement of the consequences
which result directly or indirectly from the enunciation, or from
the manner in which that which is enunciated connects the num-
bers given with the numbers required, that is to say, from the
relations which it establishes between these numbers. If these
relations are not complicated, we can for the most part find by
simple reasoning the value of the unknown numbers. In order
to this it is necessary to analyze the conditions, which are in-
volved in the relations enunciated, by reducing them to a course
of equivalent expressions, of which the last ought to be one of
the following ; the unknown quantity equal to the sum or the differ-
ence, or the product, or the quotient, of such and suck magnitudes.
This will be rendered plainer by an example.

To divide a given number into two such purts, that the first shall
exceed the second by a given difference.

In order to this we would observe 1., that,

The greater part is equal to the less added to the given excess, and
that by consequence, if the less be known, by adding to it this
excess we have the greater ; 2., that,

Alg. 1
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The greater added to the less forms the number to be divided.

Substituting in this last proposition, instead of the words, the
greater part, the equivalent expression given above, namely, the
less part added to the given excess, we find that

The less part, added to the given excess, added morcover to the
less part, forms the number to be divided.

But the language may be abridged thus,

Twice the less part, added to the given cxcess, forms the number
to be divided ;
whence we infer, that,

Twice the less part is equal to the number to be divided diminished
by the given excess ;
and that,

Once the less part is equal to half the difference between the num-
ber to be divided and the given excess.

Or, which is the same thing,

The less part is equal to half the number to be divided, dimin-
wshed by half the given excess.

The proposed question then is resolved, since to obtain the
parts sought it is sufficient to perform operations purely arith-
metical upon the given numbers.

If, for example, the number to be divided were 9, and the
excess of the greater above the less 5, the less part would be,
according to the above rule, equal to § less £, or %, or 2; and
the greater, being composed of the less plus the excess 5, would
be equal to 7.

2. The reasoning, which is so simple in the above problem,
but which becomes very complicated in others, consists in gen-
eral of a certain number of expressions, such as added to, dimin-
ished by, is equal to, &c. often repeated. These expressions
relate to the operations by which the magnitudes, that enter into
the enunciation of the question, are connected among themselves,
and it is evident, that the expressions might be abridged by
representing each of them by a sign. This is done in the follow-
ing manner.

To denote addition we use the sign +-, which signifies plus.

For subtraction we use the sign —, which signifies minus.

For multiplication we use the sign X, which signifies multi-
plied by.

To denote that two quantities are to be divided one by the
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other, we place the second under the first with a straight line
between them ; £ signifies 5 divided by 4.

Lastly, to indicate that two quantities are equal, we place be-
tween them the sign =, which signifies equal.

These abbreviations, although very considerable, are still not
sufficient, for we are obliged often to repeat the number to be
divided, the number given, the less part, the number sought, &c. by
which the process is very much retarded.

With respect to given quantities, the expedient which first
offers itself is, to take for representing them determinate num-
bers, as in arithmetic ; but this not being possible with respect to
the unknown quantities, the practice has been to substitute in
their stead a conventional sign, which varies as occasion re-
quires. We have agreed to employ the letters of the alphabet,
generally using the last; as, in arithmetic, we put « for the fourth
term of a proportion, of which only the three first are known.
It is from the use of these several signs that we derive the
science of Algebra.

I now proceed by means of them to consider the question
stated above (1). I shall represent the unknown quantity, or
the less number, by the letter «, for example, the number to be
divided and the given excess by the two numbers 9 and 5 ; the
greater number, which is sought, will be expressed by x - 5,
and the sum of the greater and less by « 4 54 «; we have
then

x+54+2=9;
but by writing 2 « for twice the quantity @, there will result
2x45=09.

This expression shows that 5 must be added to the number
2 x to make 9, whence we conclude that

20 =9 — 5,
or that 2x =4,
and that lastly r=4=2.

By comparing now the import of these abridged expressions,
which I have just given by means of the usual signs, with the
process of simple reasoning, by which we are led to the solution,
we shall see that the one is only a translation of the other.

The number 2, the result of the preceding operations, will
answer only for the particular example which is selected, while
the course of reasoning considered by itself, by teaching us, that



4 Elements of Algebra.

the less part 1s equal to holf the number to be divided, minus half
the given cxcess, renders it evident, that the unknown number is
composed of the numbers given, and furnishes a rule by the aid
of which we can resolve all the particular cases comprehended
in the question. )

The superiority of this method consists in its having reference
to no one number in particular ; the numbers given are used
throughout, without any change in the language by which they
are expressed ; whereas, by considering the numbers as determi-
nate, we perform upon them, as we proceed, all the operations
which are represented, and when we have come to the result,
there is nothing to show how the number 2, to which we may
arrive by any number of different operations, has been formed
from the given numbers 9 and 5.

3. These inconveniences are avoided by using characters to
represent the number to be divided and the given excess, that
are independent of every particular value, and with which we
can therefore perform any calculation. The letters of the alpha-
bet are well adapted to this purpose, and the proposed question
by means of them may be enunciated thus,

To divide a given number represented by a into two such parts
that the greater shall have with respect to the less a given excess
represented by b.

Denoting always the less by « ;

The greater will be expressed by @ 44

Their sum, or the number to be divided, will be equal to
x4+ axfbor2a406;

The first condition of the question then will give

2x+b=a.

Now it is manifest that, if it is necessary to add to double of
@, or to 2, the quantity b in order to make the quantity e, it
will follow from this, that it is necessary to diminish a by b to
obtain 2 x, and that consequently 2 @ = ¢ — b.

b

We conclude then that half of 2@ or @ = g—Q'
This last result, being translated into ordinary language, by
substituting the words and phrases denoted by the letters and
signs which it contains, gives the rule found before, according to

which, tn order to obtain the less of two parts sought we subtract
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Jrom kalf of the number to be divided, or from %half of the given

excess, o7 5.
Knowing the less part, we have the greater by adding to the

less the given excess. This remark is sufficient for effecting the

solution of the question proposed; but Algebra does more ; it

furnishes a rule for calculating the greater part without the aid of

the less as follows ;

a

b, . . .
53 being the value of this, augmenting it by the excess b,

we have for the greater part g—g +b. Now g——g + b shows

that after having subtracted from g the half of b, it is necessary

to add to the remainder the whole of b, or two halves of b,

which reduces itself to augmentingg by the half of 4, or by g-

It is evident then that g——g -+ b becomes g + g; and by trans-
lating this expression we learn, that of the two parts sought the
greater is equal to half of the number to be diwvided plus half of
the given excess.

In the particular question which I first considered, the num-
ber to be divided was 9, the excess of one part above the other
5; in order to resolve it by the rules to which we have just
arrived, it will be necessary to perform upon the numbers 9 and 5,
the operations indicated upon @ and b.

The half of 9 being § and that of 5 being £, we have for the
less part

— 4 —C
-"‘2‘—-2:

wjo
[SEY

and for the greater
$ti=w =T,

4. I have denoted in the above the less of the two parts by a,
and 1 have deduced from it the greater. If it were required to
find directly this last, it should be observed, that representing it
by x, the other will be x — 4, since we pass from the greater to
the less by subtracting the excess of the first above the second ;
the number to be divided will then be expressed by = 4- @ — b,
or by 2 2 — b, and we have consequently 22 —b = a.

This result makes it evident that 2z exceeds the quantity a
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by the quantity b, and that consequently 22=a+b. By
taking the half of 2 2 and of the quantity which is equal to it, we
obtain for the value of «
a b

T = 5 -+ 5
which gives the same rule as the above for determining the
greater of the two parts sought. 1 will not stop to deduce from
it the expression for the smaller.

The same relation between the numbers given and the num-
bers required may be enunciated in many different ways. That
which has led to the preceding result is deduced also from the
following enunciation :

Knowing the sum a of two numbers and their differenceb, to find
each of those numbers ; since, in other words, the number to be
divided is the sum of the two numbers scught, and their differ-
ence is the excess of the greater above the less. The change in
the terms of the enunciation being applied to the rules found
above, we have

The less of two numbers sought is equal to half of the sum
minus half of the difference.

The greater s equal to half of the sum plus half of the difference.

5. The following question is similar to the preceding, but a
little more complicated.

To divide a giwen number into three such parts, that the excess
of the mean above the least may be a given number, and the excess
of the greatest above the mean may be another given number.

For the sake of distinctness I will first give determinate values
to the known numbers.

I will suppose that the number to be divided is 230 ;
that the excess of the middle part above the least is 40 ; and
that of the greatest above the middle one is 60.

Denoting the least part by @,
the middle one will be the least plus 40, or x 4 40, and the
greatest will be the middle one plus 60, or 4 40 4- 60.

Now the three parts taken together must make the number to
be divided ; whence,

2+ 2 + 40 4 @ + 40 4 60 = 230.

If the given numbers be united in one expression and the un-

known ones in another, @ is found three times in the result, and

for the sake of conciseness we write
32 4 140 = 230.
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But since it is necessary to add 140 to triple of x to make 230,
it follows, that by taking 140 from 230 we have exactly the
triple of x, or

3 = 230 — 140,
or 32 =90,
whence it follows that
x = %° == 30.

By adding to 30 the excess 40 of the middle part above the
least, we have 70 for the middle part.

By adding to 70 the excess 60 of the greatest above the mid-
dle part, we have 130 for the greatest.

6. If the known numbers were different from those which I
have used in the enunciation, we should still resolve the question
by following the course pursued in the preceding article, but we
should be obliged to repeat all the reasonings and all the opera-
tions, by which we have arrived at the number 30, because there
is nothing to show how this number is composed of 230, 40,
and 60. To render the solution independent of the particular
values of numbers, and to show how the value of the unknown
quantity is fixed by means of the known quantities, I will enun-
ciate the problem thus;

To divide a given number a into three such parts, that the excess
of the middle one above the least shall be o given number b, and the
excess of the greatest above the middle one shall be a given number c.

Designating as above by x the unknown quantity, and making
use of the common signs and the symbols a, b, ¢, which repre-
sent the known quantities in the question, the reasoning already
given will be repeated.

The least part = «
the middle part = x4 b,
the greatest =a4b+ec
and the sum of these three makes the number to be divided;
hence,

etactbfactbtc=uq

This expression, which is so simple, may be still further
abridged ; for since it appears that  enters three times into the
number to be divided and b twice, instead of x 4 @ 4 x, I shall
write 3 «, and instead of 4 b 4- b, I shall write 4 2, and it will
become

3z+2b+c=ua.
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From this last expression it is evident, that it is necessary to
add to triple the number represented by , double the number
represented by b, and also the number ¢, in order to make the
number a ; it follows then, that if from the number a we take
double the number & and also the number ¢, we shall have exactly
the triple of «, or that

3r=a—2b—-c.
Now a being one third of three times , we thence conclude
that
_a—2b—c

It should be carefully observed, that having assigned no par-
ticular value to the numbers represented by a, b, ¢, the result to
which we have come isequally indeterminate as to the value of
@3 it shows merely what operations it is necessary to perform
upon these numbers, when a value is assigned to them, in order
thence to deduce the value of the unknown quantity.
a—2b—c¢

3
be reduced to common language by writing, instead of the let-
ters, the numbers which they represent, and instead of the signs,
the kind of operation which they indicate ; it will then become,
as follows ;

From the number to be divided, subtract double the excess of the
middle part above the least, and also the excess of the greatest above
the middle part, and take a third of the remainder.

If we apply this rule, we shall determine, by the simple opera-
tions of arithmetic, the least part. The number to be divided
being for example 230, one excess 40, and the other 60, if we
subtract as in the preceding article twice 40, or 80, and 60 from
230, there will remain 90, of which the third part is 30, as we
have found already.

If the number to be divided were 520, one excess 50, and the
other 120, we should subtract twice 50, or 100, and 120 from
520, and there would remain 300, a third of which or 100 would
be the smallest part. The others are found by adding 50 to 100,
which makes 150, and 120 more to this, which makes 270, so
that the parts sought would be

100, 150, 270,
and their sum would be 520, as the question requires.

In short, the expression , to which @ is equal, may
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It is because the results in algebra are for the most part only
an indication of the operations to be performed upon numbers
in order to find others, that they are called in general formulas.

This question, although more complicated than that of article
1., may still be resolved by ordinary language, as may be seen
in the following table, where against each step is placed a transla-
tion of it into algebraic characters.

PROBLEM.

To divide a number into three such parts, that the excess of
the middle one above the least shall be a given number, and the
excess of the greatest above the middle one shall be another given
number,.

SOLUTION.
By common language. By algebraic characters.
Let the number to be divid-
ed be denoted by a.
The excess of the middle part
above the least by b.

The excess of the greatest
above the middle one by .
The least part being z.

The middle part will be the
least, plus the excess of the > The middle part will be x4 4.
mean above the least.

The greatest part will be the)
middle one, plus the excess of
the greatest above the middle
one. The three parts will to-
gether form the aumber pro-
posed.

~ The greatest will be  4- b +¢.

J

Whence the least part, plus)
the least part, plus the excess
of the middle one above the
least, plus also the least part, | Whence
plus the excess of the middle pe 2 +b+ 2+ b4 c=a.
one above the least, plus the
excess of the greatest above
the middle one, will be equal
to the number to be divided.

Alg. 2

Y
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Whence three times the least )
part, plus twice the excess of
the middle part above the
least, plus also the excess of p3x +2b4c=ua.
the greatest above the middle
one, will be equal to the num-
ber to be divided.

J

Whence three times the least)
part will be equal to the num-
ber to be divided, minus twice
the excess of the middle part -3z =a—2b—c.
above the least, and minus
also the excess of the greatest

above the middle one. )

Whence in fine, the least part )
will be equal to a third of
what remains after deducting
from the number to be divid- a—2b—c
ed twice the excess of the mid- (¥ = 3 ’
dle part above the least, and
also the excess of the greatest
above the middle one.

7

7. The signs mentioned in article 2. are not the only ones
used in algebra. New considerations will give rise to others,
as we proceed. It must have been observed in article 2. that
the multiplication of 2 by 2, and in articles 5. and 6. that of x by
3 and that of b by 2, is denoted by merely writing the figures
before the letters @ and & without any sign between them, and I
shall express it in this manner hereafter; so that a number
placed before a letter is to be considered as multiplied by the
number represented by that letter, 5 z, 5 a, &c. signify five times

z, five times a, &c. 2 x or T &ec. signifies  of x, or three times

@ divided by 4, &c.

In general, multiplication will be denoted by writing the fac-
tors in order one after the other without any sign between them,
whenever it can be done without confusion.

Thus the expressions ax, bc, &c. are equivalent to a X a,
b X ¢, &c., but we cannot omit the sign when numbers are con-
cerned, for then 3 X 5, the value of whichis 15, becomes 35. In
this case we often substitute a point in the place of the usual
sign, thus, 3 . 5.
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8. If the solution of the problems in articles 3. and 6. be exam-
ined with attention, it will be found to consist of two parts entirely
distinct from each other. In the first place, we express by
means of algebraic characters the relations established by the
nature of the question between the known and unknown quan-
tities, from which we infer the equality of two quantities among
themselves ; for instance, in article 3. the quantities 2 « 4 b and a,
and in article 6. the quantities 32 42 b + ¢ and a.

We afterwards deduce from this equality a series of conse-
quences, which terminate in showing the unknown quantity @ to
be equal to a number of known quantities connected together by
operations, that are familiar to us; this is the second part of the
solution.

These two parts are found in almost every problem which be-
longs to algebra. It is not easy, however, at present to give a
rule adapted to the first part, which has for its object to reduce
the conditions of the question to algebraic expressions. To be
able to do this well, itis necessary to become familiar with the
characters used in algebra, and to acquire a habit of analyzing
a problem in all its circumstances, whether expressed or implied.
But when we have once formed the two numbers, which the ques-
tion supposes equal, there are regular steps for deducing from
this expression the value of the unknown quantity, which is the
object of the second part of the solution. Before treating of
these I shall explain the use of some terms which occur in alge-
bra.

An equation is an expression of the equality of two quantities.

The quantities which are on one side of the sign = taken
together are called a member ; an equation has two members.

That which is on the left is called the first member, and the
other the second.

In the equation 2 +b =a, 2 2+ b is the first member, and
ais the second member.

The quantities, which compose a member, when they are sepa-
rated by the sign 4+ or —, are called Zerms.

Thus, the first member of the equation 2x 4 b = ¢ contains
two terms, namely, 2 # and - b.
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The equation 2z 4 7=8x—12 has two terms in each of

its members, namely,
2 zand 4 7 in the first,
8 r and — 12 in the second.

Although T have taken at random, and to serve for an exam-
ple merely, the cquation x4 7 = 8z —12, it is to be consid-
ered, as also every other of which I shall speak hereafter, as
derived from a problem, of which we can always find the enun-
ciation by translating the proposed equation into common lan-
guage. This under econsideration becomes,

To find a number x such, that by adding 7 to 2 x, the sum shall
be equal to 8 times x minus 12.

Also the equation ax 4+ bc—cx=ac—buax, in which the
letters a, b, ¢, are considered as representing known quantities,
answers to the following question ;

To find a number x such, that multiplying it by a given number a,
and adding the product of two given numbersb and ¢, and subtract-
ang from this sum the product of a given number c by the number x,
we shall have a result equal to the product of the numbers a and c,
diminished by that of the numbers b and x.

It is by exercising one’s self frequently in translating questions
from ordinary language into that of algebra, and from algebra
into ordinary language, that one becomes acquainted with this
science, the difficulty of which consists almost entirely in the
perfect understanding of the signs and the manner of using them.

To deduce from an equation the value of the unknown quan-
tity, or to obtain this unknown quantity by itself in one member
and all the known quantities in the other, is called resolving the
equation. '

As the different questions, which are solved by algebra, lead
to equations more or less compounded, it is usual to divide them
into several kinds or degrees. 1 shall begin with equations of the
first degree. Under this denomination are included those equa-
tions in which the unknown quantities are neither multiplied by
themselves nor into each other.

Of the resolution of Equations of the First Degree, having but one
unknown quantity.

9. We have already seen that to resolve an equation is to
arrive at an expression, in which the unknown quantity alone in
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one member is equal to known quantities combined together by
operations which are easily performed. It follows then, that in
order to bring an equation to this state, it is necessary to free
the unknown quantity from known quantities with which it is
connected. Now the unknown quantity may be united to known
quantities in three ways ;
1. By addition and subtraction, as in the equations,
24+5=9—u
¢+x=5b—ua
2. By addition, subtraction, and multiplication, as in the
equations,
Te—5=12 + 4«
ar—b=ca4d.
3. Lastly, by addition, subtraction, multiplication, and division,
as in the equations,

+8_1; z+9,

+cw—d—-—+p

The unknown quantity is freed from addmons and subtrac-
tions, where it is connected with known quantities, by collecting
together into one member all the terms in which it is found ; and
for this purpose it is necessary to know how to transpose a term
from one member to the other.

10. For example, in the equation

To—>5=1244a
it is necessary to transpose 4 x from the second member to the
first, and the term — 5 from the first member to the second.
In order to this, it is obvious, that by cancelling 44 @ in the
second member, we diminish it by the quantity 4 @, and we must
make the same subtraction from the first member, to preserve
the equality of the two members; we write then—4 in the
first member, which becomes 7 ¢ — 5 — 4 x, and we have

Te—b5—4x=12.

To cancel — 5 in the first member, is to omit the subtraction
of 5 units, or in other words, to augment this member by 5 units;
to preserve the equality then we must increase the second mem-
ber by .5 units, or write 4 5 in this member, which will make
it 12 4+ 5 ; we have then

Te—42=124 5.
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By performing the operations indicated there will result the
equation 3x=117.

From this mode of reasoning, which may be applied to any
example whatever, it is evident, that to cancel in a member a
term affected with the sign 4, which of course augments this
member, it is necessary to subtract the term from the other
member, or to write it with the sign —; that on the contrary
when the term to be effaced has the sign minus, as it diminishes
the member to which it belongs, it is necessary to augment the
other member by the same term, or to write it with the sign - ;
whence we obtain this general rule ;

To transpose any term whatever of an equation from one mem-
ber to the other, it is necessary to effuce it in the member where 1t 1s
Jound, and to write it in the other with the contrary sign.

To put this rule in practice, we must bear in mind that the
first term of each member, when it is preceded by no sign, is
supposed to have the sign plus. Thus, in transposing the term
cx of the literal equation a @ —b = ca 4 d from the second
member to the first, we have

ax—b—ca=d;
transposing also — & from the first member to the second, it
becomes

ax—cr=d-+0b.

11. By means of this rule, we can unite together in one of the
members all the terms containing the unknown quantity, and in
the other all the known quantities; and under this form the
member, in which the unknown quantity is found, may always
be decomposed into two factors, one of which shall contain only
known quantities, and the other shall be the unknown quantity by
itself. ’

This process suggests itself immediately, whenever the pro-
posed equation is numerical and contains no fractions, because
then all the terms involving the unknown quantity may be re-
duced to one. If we have, for example,

1004+ 7Tc—22=25417,
by performing the operations indicated in each member, we shall
have in succession
172 —22x =32,
152 = 32;
and 15 z is resolved into two factors 15 and « ; we have then
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the unknown factor by dividing the number 32, which is equal
to the product 15 x by the given factor 15, thus,
@ == 9L,

This resolution is effected in like manner in the literal equations

of the form

ar="bc;
because the term a « signifies the product of @ by «; we hence
conclude, that

2= be,

Let there be the equation
ar—brtcex=ac—be,

which contains three terms involving the unknown quantity.
Since a @, b x, ¢ x, represent the products respectively of @ by the
quantities @, b, and ¢, the expression ax — b @ + ¢« translated
into ordinary language is rendered as follows,

From x taken first, so many times as there are units in a, sub-
tract so many times X as there are units in b, and add to the result
the same quantity x, taken so many times as there are units in c.

It follows then on the whole, that the unknown quantity @ is
taken so many times as there are units in the difference of the
numbers a and b, augmented by the number ¢, that is to say, so
many times as is denoted by the number a — & +4-¢; the two
factors of the first member are therefore ¢ —b 4-¢ and x; we
have then

ac—bc
=

From this reasoning, which may be applied to every other ex-
ample, it is evident, that after collecting together into one member
the different terms containing the unknown quantity, the factor,
by which the unknown quantity is multiplied, is composed of all those
quantities by which it is separately multiplied, arranged with their
proper signs, and the unknown quantity is found by dividing all the
terms of the known member by the factor which is thus obtained.

According to this rule, the equation a 2 — 3z = b ¢ gives

be
a—3'
Also the equation 4 ¢ ® = ¢ — d is reduced to
c—d
T = m,

T =
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for it is necessary to observe that the letter x, taken singly,
must be regarded as multiplied by one. It is besides manifest,
that in « 4~ a @, the unknown quantity  is contained once more
than in @ @, and is consequently multiplied by 1 4 a.

12. 1t is evident that if there be a factor, which is common to
all the terms of an equation, it may be dropped without destroy-
ing the equality of the two expressions, since it is merely dividing
by the same number all the parts of the two quantities, which are
by supposition equal to each other.

Let there be, for example, the equation

6abr—9bcd=12bdx 4+ 15abec.
I observe in the first place, that the numbers 6, 9, 12 and 15 are
divisible by 3, and by suppressing this factor, I merely take a
third part of all the quantities which compose the equation.

I have after this reduction,

2aba—3bcd=4bdx+5abec.
I observe, moreover, that the letter b, combined in each term as
a multiplier, is a factor common to all the terms; by cancelling it
the equation becomes
2arx—3cd=4dx+5ac.
Applying the rules given in articles 10, and 11., I deduce suc-
cessively
2ax—4der=5ac+ 3cd,
g 2act3ed
— Qa—4d "’

13. I now proceed to equations, the terms of which have divi-
sors. These may be solved by the preceding rules whenever
the unknown quantity does not enter into the denominators ;
but it is often more simple to reduce ali the terms to the same
denominator which may then be cancelled.

Let there be, for example, the equation

2z 4z 5z
Fta=F 12—

Arithmetic furnishes rules for reducing fractions to the same
denominator, and for converting whole numbers into fractions of
a given kind. (Arith. 79, 69.) Let all the terms of the pro-
posed equation be transformed by these rules into fractions of
the same denominator, beginning with the fractions, which are

2z 4z 512
B
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I convert them by the first of the rules cited into the following ;
5XTX22 3XTX4x 3X5X52
BXOXT’ 3X6XT7’ 3X5X7

Since, for converting the whole numbers 4 and 12 into fractions,

nothing more is necessary than to multiply them by the common

denominator of the fractions, namely, 3 X 5 X 7; we have
3% 5X 17X 4, 3x 5% 17 X12.
By placing all these terms in order in the proposed equation, it
will become

S5X7TX2x  3X5XT7TX4

SX X7 T BXBXT
IX7TX4zr , 3 XE5XTXI12 3X5X52
= 3xEXT T B3%5X7 3xExXT’

The denominator may now be cancelled, since by doing it we
only multiply all the parts of the equation by this denominator
(Arith. 54), which does not destroy the equality of the members.
It will become then

SXTX2x4+3X5XTX4
=3X7TX42+3X5XTX12—3X5X5a,
or 702 4+ 420 = 84 x + 1260 — 75,

an equation without a denominator from which we deduce the
value of @ by the preceding rules.

It is evident from inspection, as also from the mere applica-
tion of the arithmetical rules referred to, that in the above ope-
ration the numerators of each fraction must be multiplied by the pro-
duct of the denominators of all the others, the whole numbers by the
product of all the denominators ; then no account need be taken of
the common denominators of the fractions thus obtained.

The equation 70 2 + 420 = 84z } 1260 — 752 becomes
successively

70z 4 75 5 — 84 2 = 1260 — 420,
61 » = 840,
T = 840 = 1347,

The same process is applicable to literal equations, it being
observed, that it is necessary only to indicate the multiplications,
which are actually performed when numbers are concerned.

Let there be, for example, the equation
we deduce from it

ehX axz—behxc=bhXda+beX fg,
Alg. 3
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a result which may be more simply expressed by placing the
factors of each product one after the other without any sign be-
tween them, according to the method given in article 7. ; and by
arranging the letters in alphabetical order, they are more easily
read ; it then becomes

achr—bceh=bdhao+4befg,
from which is deduced

aehe—bdha=befg+beeh,

_befgtbcek
and ~ aeh—bah

14. Although no general and exact rule can be given for
forming the equation of any question whatever ; there is, not-
withstanding, a precept of extensive use, which cannot fail to
lead to the proposed object. It is this,

To indicate by the aid of algebraic signs upon the known quan-
tities represented either by numbers or letters, and upon the unknown
quantities represented always by letters, the same reasonings and
the same operations, which it would have been mecessary to perform
in order to verify the values of the unknown quantities, had they
been known.

In making use of this precept, it is necessary, in the first place,
to determine with care what are the operations which are con-
tained in the enunciation of the question, either directly or by
implication ; but this is the very thing which constitutes the diffi-
culty of putting a question into an equation.

The following examples are intended to illustrate the above
precept. I have taken the two first from among the questions
which are solved by arithmetic, in order to show the advantage of
the algebraic method.

(1.) Let there be two fountains, the first of which running for 21h.
Jills a certain vessel, and the second fills the same vessel by running
32h. ; what time will be employed by both the fountains running
together in filling the vessel 2

If the time were given, we should verify it by calculating the
quantities of water discharged by each fountain; and adding them
together we should be certain, that they would be equal to the
whole content of the vessel.

To form the equation we denote the unknown time by x, and
we indicate upon « the operations implicd by the question ; but
in order to render the solution independent of the given num-
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bers, and at the same time to abridge the expression where frac-
tions are concerned, we will represent themn also by letters, o
being written instead of 21h. and b instead of 33h.

This being supposed, by putting the capacity of the vessel
equal to unity, it is evident, that

The first fountain, which will fill it in a number of hours de-
noted by @, will discharge into it in one hour a quantity of

.1 .
water expressed by the fraction - and that consequently, in a

.o . . 1 z
number @ of hours it will furnish the quantity @ X -, or —.

(Arith. 53).
The second fountain, which will fill the same vessel in a num-
ber of hours described by b, will discharge into it in one hour a

quantity of water expressed by the fraction 1, and consequent-
. . . . 1
ly in a number @ of hours, it will furnish the quantity = X P
ors
5'

The whole quantity of water then furnished by the two fountains,
will be

z x

a + ’
and this quantity must be equal to the content of the vessel,
which was considered as unity ; we have then the equation

z z
=1
This equation reduced by the foregoing rules, becomes
br+4az=ab,

The last formula gives this simple rule for resolving every
case of the proposed question.

Divide the product of the numbers, which denote the times em-
ployed by each fountain in filling the vessel, by the sum of these
numbers ; the quotient expresses the time required by both the foun-
tains running together to fill the vessel.

Applying this rule to the particular case under consideration,
we have

<
o

2
2

X 3
+3

[ haren
Bles Bl
Il

Il

|

] or pojer

X 1K5
_l_ 14_5
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whence r=1s=23.
(2.) Let a be a number to be divided into three parts, having
among themselves the same ratios as the gwen numbers m, n, and p.
It is evident that the verification of the question would be as
follows ;

denoting the 1st part by x, we have

m:n::e:the 2d part = 7:—;, (Arith. 116.)

m:p::x:thefidpart:p;;-

b

the three parts added together must make the number to be
divided. We have then the equation

nx T

R et Ay
By reducing all the terms to the denominator m, it becomes
ma +ne + pr=am;
and we deduce from this
am

= Aty
This result is nothing more nor less than an algebraic expres-
sion of the rule of Fellowship (Arith. 124); for by regarding
the numbers m, n, p, as denoting the stocks of several persons
trading in company, m + n -4 p is the whole stock, a the gain
to be divided, and the equation

ma
T
shows that a share is obtained by multiplying the corresponding
stock into the whole gain, and dividing the product by the sum of
the stocks ; which reduced to a proportion, becomes

the whole stock : a particular stock
: : the whole gain : the particular gain.

15. To form an equation from the following question, re-
quires an attention to some things, which have not yet been con-
sidered.

A fisherman, to encourage his son, promises him 5 cents for each
throw of the net in which he shall take any fish, but the son, on the
other hand, is to remit to the father 3 cents for each unsuccessful
throw. JAfter 12 throws the father and the son settle their account,
and the former is found to owe the latter 28 cents. What was the
number of successful throws of the net.

T

xr =
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If we represent this number by z, the number of unsuccessful
ones will be 12— x; and if these numbers were given, we should
verify them by multiplying 5 cents by the first, to obtain what
the father was bound to pay the son, and 3 cents by the second,
to find what the son engaged to return to the father. The first
number ought to exceed the second by 28 cents, which the
father owed the son.

We have for the first number @ times 5 cents, or 52. With
" respect to the second, there is some difficulty. How are we to
obtain the product of 3 by 12—a? If instead of @ we had a
given number, we should first perform the subtraction indicated,
and then multiply 3 by the remainder ; but this cannot be done
at present, and we must endeavour to perform the multiplication
before the subtraction, or at least, to give the expression an
entire algebraic form, similar to that of equations that are readily
solved.

With a little attention we shall see, that by taking 12 times
the number three, we repeat the number 3 so many times too
much, as there are units in the number @, by which we ought
first to have diminished the multiplier 12, so that the true pro-
duct will be 36 diminished by 3 taken x times, or 3 @,
or more simply 36 — 3 a.

This conclusion may be verified by giving to z a numerical
value. If, for example, @ were cqual to 8, we should have 3 to
be taken 12 times— 8 times, and, if we neglect — 8 times, we
should make the result S times the number 3 too much ; the
true product then will be

3X 12—3 X 8=236—24 = 12.
This result’ agrees with that which would arise from first sub-
tracting 8 from 12 ; for then
12—8 =4,and 3 x 4 = 12.

This being admitted, since the money due from the father to the
son is expressed by 5x, and that which the son owes the father
by 36 —3ux, the second number must be subtracted from the
first in order to obtain the remainder 28 5 but here is another
difficulty ; how shall we subtract 36 — 3a from 5 2, without
having first subtracted 3 @ from 36 ?

We shall avoid this difficulty by observing, that if we neglect
the term — 3 », and subtract from 5z the entire number 36, we
shall have taken necessarily 3 @ too much, since it is only what
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remains after having diminished 36 by 3a that is to be subtract-
ed from 5a; so that the difference 5 x — 36 ought to be aug-
mented by 3 in order to form the quantity that should remain
after having taken from 5« the number denoted by 36 —3uw.
This quantity will then be
52—36 43 a,
and we have the equation
5r—36 4 3 =28,
which becomes successively

8o — 36 = 28,
8x =28 4 36,
8x = 64,

x= % =8.

There have been then 8 successful throws of the net and 4
unsuccessful ones.

Indeed 8 throws at 5 cents a throw give 40 cents,

4 throws at 3 cents a throw give 12
difference 28
as required by the conditions of the question.

To render the solution general, let @ represent the sum given
by the father to the son for each successful throw of the net, and
b the sum returned by the son for each unsuccessful one, and ¢
the total number of throws, and d the sum received on the whole
by the son. If « be put equal to the number of successful throws,
¢— a will express the number of unsuccessful ones ; each throw
of the former kind being worth to the son a sum a, @ throws
would be worth @ X @, or a x, and the unsuccessful throws would
be worth to the father the sum & multiplied by the number ¢ — a.

The reasoning by which we have found the parts of the pro-
duct of 3 by 12— x, applies equally to the general case. If we
neglect in the first place — x in forming the product b ¢ of & by
the whole of ¢, the sum & will be repeated x times too much, and
consequently the true product will be b¢—b .

In order to subtract this product from the sum @, it is neces-
sary to observe, as in the numerical example, that if we subtract
the whole of the quantity b ¢, we take the quantity b 2 too much,
by which the former ought to have been first diminished, and
that consequently the true remainder is not merely a « — b ¢, but

ex—bc+ b
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As this sum is equal to d, we have the equation
ar—bec+bax=d,
which gives
ard-bx=d+bec
d4bec
z= ;*__;__b_.

As this general formula indicates what operations are to be
performed upon the numbers a,b,¢, d, in order to obtain the
unknown quantity x, we may reduce it to a rule, or carefully
write instead of the letters a,d,c,d, the numbers given. This
last process is called substituting the values of the given quanti-
ties, or putting the formula into numbers. Applying here those of
the foregoing example, as we have

813 % 12
558 °
by performing the operations indicated, it becomes
98436 64
r=Tgy =g =8

Methods for pefforhzing, as far as is possible, the Operations indi-
cated upon Quantities that are represented by Letters.

16. From the preceding question it is evident, thatin certain
cases a multiplication indicated upon the sum or difference of
several quantities is made to consist of several partial multipli-
cations ; and in art. 11, we have exactly the reverse, by resolv-
ing the quantity ¢ ¢ — b« 4 ¢, which represents the result of
several multiplications, followed by additions and subtractions,
into the two factors @ — b 4~ ¢ and @, which indicate only a sin-
gle multiplication preceded by addition and subtraction. The
reasoning pursued in these two circumstances will suggest rules
for performing, upon quantities represented by letters, operations
which are called algebraic multiplication and division, from the
analogy which they have with the corresponding operations of
arithmetic.

We have also by the same analogy two algebraic operations,
which bear the names of addition and subtraction, in which the
object is to unite several algebraic expressions in one, or to take
one expression from another. But these operations, like the
preceding, differ from those of arithmetic in this, that their
results are, for the most part, only indications of the operations
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to be performed; they present only a transformation of the
operations originally indicated into others, which produce the
same effect. All thatis done, is either to simplify the expres-
sions, or to give them a proper form for exhibiting the conditions
that are to be fulfilled.

In order to explain these operations, we give the name of
simple quantities to those which consist only of one term, as
42 a,—3 ab, &c.; binomials to those which consist of two, as
a-+b, a—b, 5a— 2, &c.; trinomials to those which consist
of three terms ; quadrinomials to those which consist of four terms,
and polynomials to those which consist of more than four terms.
It may be observed also, that we call polynomials campound quants-

ties.
Of the Addition of Algebraic Quantities.

17. Tue addition of simple quantities is performed by writing
them one after the other, with the sign 4 between them; thus, @
added to b is expressed by a 4- 6. But when it is proposed to
add together several algebraic expressions, we aim at the same
time to simplify the result by reducing it to as small a number
of terms as possible by uniting several of the terms in one.
This is done in articles 2. and 5. by reducing the quantity  + «
to 2a, and the quantity 4 @ -4« to 3a. It can take place
only with respect to quantities expressed by the same letters,
and which are for this reason called similar quantities. A literal
quantity that is repeated any number of times is regarded as a
unit; it is thus, that the quantities 2 a and 3 @ considered as two
and three units of a particular kind, form when added 5 a or 5
units of the same kind. Also 4 ¢ b and 5« b make 9a .

In this case, the addition is performed with respect to the
figures which precede the literal quantity, and which show how
many times it is repeated. These figures are called coefficients.
The coefficient then is the multiplier of the quantity before which
it is placed, and it must be recollected, that when there is none
expressed, unity is understood ; for 1 @ is the same as a.

18. When itis proposed to unite any quantities whatever, as

4a-450band 2¢+ 34,
the sum total ought evidently to be composed of all the parts
joined together ; we must write then

4a+45b+42c+3d.
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If we have on the contrary
4a4+5b and 2c¢—34d,
the sign — must be retained in the sum, to mark as subtractive
the quantity 3 d, which, as it is to be taken from 2 ¢, must neces-
sarily diminish by so much the sum formed by uniting 2 ¢ with the
first of the quantities proposed ; we have then,
4a+5b+2c—34d.

From these two examples it is evident, that in algebra the addi-
tion of polynomials is performed by writing in order, one after the
other, the quantities to be added with their proper signs, it being
observed that the terms which have no signs before them are consider-
ed as having the sign .

The above operation is, properly speaking, only an indication
by which the union of two compound quantities is made to con-
sist in the addition and subtraction of a certain number of simple
quantities ; but, if the quantities to be added contained similar
terms, these terms might be united by performing the operation
upon their coefficients.

Let there be, for example, the quantities

40+4+9b—2¢,
2a—3c+4d,
Tb4 ¢ — e;

the sum indicated would be, according to the rule just given,
4a4+9b—2c+2a—38c+4+4dF+Tb+4c—e.

But the terms 4 a -+ 2a, being formed of similar quantities,
may be united in one sum equal to 6 a.

Also the terms 4 96 + 7b give 416 5.

The terms —2c¢ and — 3¢, being both subtractive, produce
on the whole the same effect as the subtraction of a quantity
equal to their sum, that is to say, as the subtraction of 5c; and
as by virtue of the term + ¢, we have another part ¢ to be added,
there will remain therefore to be subtracted only 4 ¢.

The sum of the expressions proposed, then, will be reduced to

6a416b—4c+4d—e.

The last operation exhibited above, by which all similar
terms are united in one, whatever signs they have, is called
reduction. It is performed by taking the sum of similar quantities
having the sign -, that of similar quantities having the sign —,
and subtracting the less of the two sums from the greater, and
gwing to the remainder the sign of the greater.

Alg. 4
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It is to be remarked, that reduction is applicable to all algebraic
operations.
The following examples of addition, with their answers, are
intended as an exercise for the learner.
(1.) To add the quantities
Tm +3n—14p 4177
Sa +9n—11lm-4 2r
5p —4m -4 8n
11n —2b—m—r s

Adswer, Tm-4-3n—14p-++17r+43a+9In—11m+2r4-5p—4m--8n
4+ 1ln—2b—m—r+s.
By making the reduction, this quantity becomes
—9m+4+3ln—9p +18r4+3a—2b+s,
or 3ln—9m—9p+ 187r+3a—25b+s5,
by beginning with the term having the sign 4.
(2.) To add the quantities
11bc+4ad—8ac+ 5cd
8ac+ 7bc—2ad+4mn
2¢d —3ab+5actan
9an—2bc—2ad +5cd.

11bc+4ad—8ac+5cd+8ac+Tbec—2ad+4mn
2cd—3abt5actan+t+9an—2bc—2ad+45cd.

By reducing this quantity it becomes
16bc+5ac+12¢cd+4mn—3ab -+ 10an.

Of the Subtraction of Algebraic Quantities.

20. THE subtraction of single quantities, according to estah-
lished usage, is represented by placing the sign — between the
quantity to be subtracted, and that from which it is to be taken ;
b subtracted from a is written ¢ — b.

When the quantities are similar, the subtraction is performed
directly by means of the coefficients.

If 3 a be subtracted from 5 a, we have for a remainder 2 a.

With regard to the subtraction of polynomials, it is necessary
to distinguish two cases.

(1.) If the terms of the quantity to be subtracted have each the
sign 4, we must clearly give to each the sign —, since it is
required to deduct successively all the parts of the quantity to be
subtracted.
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If for example, from 5 ¢ — 9 b 4 2 ¢ we would take
2d+43e44f,
we must write 5a—9b +2¢c—2d—3e—4f.

(2.) If any of the terms of the quantity to be subtracted have
the sign —, we must give them the sign plus. Indeed, if from
the quantity @ we would take b — ¢, and should first write a — b,
we should thus diminish a by the whole quantity b; but the sub-
traction ought to have been performed after having first dimin-
ished b by the quantity ¢; we have taken therefore this last
quantity too much, and itis necessary to restore it with the sign 4-,
which gives for the true result a — b +-¢.

This reasoning, which may be applied to all similar cases, shows
that the sign — of ¢ must be changed into the sign 4 ; and by
connecting this result with the preceding, we conclude that the
subtraction of algebraic quantities is performed by writing them in
order after the quantities, from whick they are to be taken, having
Jirst changed the signs 4 into — and the signs — into +-.

After this rule has been applied, the quantities are to be reduc-
ed when they will admit of it, according to the precept given in ar-
ticle 19., as may be seen in the following examples ;

(1.) To subtract from 17a 4 2m — 96 —4c423d
the quantity 5la—27b+ 11c—4d.

Result 17a4+2m—9b —4c423d
—b5la+27b—11c+44d.
When reduced it becomes
—34a+42m 4 18b—15¢c+427d,

or rather 2m—34a 4 18b—15¢+4 27d.
(2.) To subtract from 5ac—8ab+9bc—4am
the quantity 8am—2ab+1lac—7cd.
Result 5ac—8ab+9bc—4am

—8am-+2ab—1lac 4 7cd.

Reduced it becomes
—6ac—6ab+4+9bc—12am+4 7cd,
or 9bc—6ac—06ab—12am+4 7cd.

Of the Multiplication of Algebraic Quantities.

21. So far as letters are considered as expressing the numeri-
cal values of the quantities for which they stand, multiplication
in algebra is to be regarded like multiplication in arithmetic.
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(Arith. 21, 66.) Thus, to multiply a by b ts to compound with
the quantity represented by a another quantity, in the same manner
as the quantity represented by b 1s with unity.

We bave already explained in articles 2. and 7. the signs used
to indicate multiplication; and the product of @ by & is express-
ed by a X b, or by a.b, or lastly by a b.

We have often occasion to express several successive multipli-
cations, as that of @ by b, and that of the product ab by ¢, also
that of this last product by d, and so on. In this case, it is evi-
dent, that the last result is a number having for factors the num-
bers a, b, ¢, d, (Arith. 22) ; and to give a general expression of
this method we ndicate the product by writing the factors compos-
ing it in order, one after the other, without any sign between them ;
we have accordingly the expression a b cd.

Reciprocally every expression, such as ab ¢ d formed of several
letters written in order one after the other, designates always the
product of the numbers represented by these letters.

I have already availed myself of this method, in which the nu-
merical coefficients are also included, since they are evidently fac-
tors of the quantity proposed. Indeed 15 a b ¢ d, designating the
quantity a b ¢ d taken fifieen times, expresses likewise the product
of the five factors 15, a, b, ¢, d.

It follows from this, that in order to indicate the multiplication
of several simple quantities, such as 4 abc¢, 5def, 3mn, itis
necessary to write the quantities in order, one after the other, with-
out any sign between them, and it becomes

4abcbdef3mn;
but since, as is shown in arithmetic, (art. 82.) the order of the fac-
tors of a product may be changed at pleasure without altering the
value of this product, we may avail ourselves of this principle, to
bring together the numerical factors, the multiplication of which is
performed by the rules of arithmetic ; to express then this product,
asindicated in the order 4. 5.3 a b ¢ defmn, we multiply togeth-
er the numbers 4, 5, 3, which give simply

60abcdefmn.*

* As the use of algebraic symbols abridges very much the demon-
stration of this proposition, I have thought it proper to suggest here
a method by these symbols.

If we write the product abcdef as follows, abc X de X f, and
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23. The expression of the product may be much abridged
when it contains equal factors. Instead of writing several times
in order, the letter which represents one of the factors, it need
be written only once with a number annexed, showing how
many times it ought to have been written as a factor; but as
this number indicates successive multiplications, it ought to be
carefully distinguished from a coefficient, which indicates only
additions. For this reason, it is placed on the right of the letter
and a little higher up, while a coefficient is always placed on the
left and on the same line.

Agreeably to this method, the product of a by a, which would
be indicated, according to article 21., by a a, becomes a® 'The
2 raised, denotes that the number, designated by the letter a, is
twice a factor in the expression, to which it belongs. It ought
not to be confounded with 2 @, which is only an abbreviation of
a 4 a. To render evident the error, which would arise from
mistaking one for the other, it is sufficient to substitute numbers
instcad of the letters. If we have for example a =5, 2 a would
become 2.5 = 10;and a®> =a X ¢ = 5.5 = 25.

Extending this method we should denote a product in which «
is three times a factor by writing a® instead of @ aaj; also a®
represents a product in which @ is five times a facter, and is
equivalent to aa a a a.

24. The products formed in this manner by the successive
multiplications of a quantity, are called in general powers of that
quantity.

The quantity itself, as g, is called the first power.

The quantity multiplied by itself, as aa, or % is the second
power. It is called also the square.

The quantity multiplied by itself twice in succession, as a a a,
or a3, is the third power, and is called also the cube.*

change the order of the factors of the product to e d instead of de,
(Arith. 22,) it becomes abc X ed X f, or ab cedf. Itis evident
that we may, by analyzing the product differently, produce any
change which we wish in the order of the factors of the product in
question.

* The denominations square and cube refer to geometrical con-
siderations. They interrupt the uniformity in the nomenclature of
products formed by equal factors, and are very improper in algebra.
But they are frequently used for the sake of conciseness.
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In general, any power whatever is designated by the number
of equal factors from which it is formed; a® oraaaaa is the

“fifth power of a.
I take the number 3 to illustrate these denominations, and I
have

1st. power 3

2d. 3.3= 9

3d. 3.3.3= 9.3=27
4th. 3.3.3.3=27.3=281
5th. 3.3.3.3.3=81.3=243
&e.

The number which denotes the power of any quantity is called
the exponent of this quantity.
When the exponent is equal to unity, it is not written ; thus a
is the same as al.
It is evident then, that o find the power of any number, it is
necessary to multiply this number by itself as many times less one,
as there are units in the exponent of the power.
25. As the exponent denotes the number of equal factors,
which form the expression of which it isa part, and as the pro-
duct of two quantities must have each of these quantities as fac-
tors ; it follows that the expression a5 in which a is five times a
factor, multiplied by @? in which a is three times a factor, ought
to give a product in which a is eight times a factor, and con-
sequently expressed by a®, and that in general the product of two
powers of the same number ought 1o have for an exponent the sum
of those of the multiplicand and multiplier.
26. It follows from this, that when two simple quantities have
common letters, we may abridge the expression of the product of
these quantities by adding together the exponents of such letters of
the multiplicand and multiplier. :
For example, the expression of the product of the quantities
a® 63 ¢ and a* 0° ¢ d, which would be a® 8% ca* 0® ® d, by the
foregoing rule, art. 21., is abridged by collecting together the
factors designated by the same letter, and
a®at P cc?d,

becomes ab b8 ¢ d,

by writing a® instead of o
b8 instead of 0° 0°
¢® instead of ¢ ¢® or of ¢! ¢%

2a4
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27. As we distinguish powers by the number of equal factors
from which they are formed, so also we denote any products by
the number of simple factors or firsts which produce them ; and
I shall give to these expressions the name of degrees. The pro-
duct o 8% ¢, for example, will be of the sixth degree, because it
contains six simple factors, viz; 2 factors a, 3 factors b, and 1
factor ¢. Itis evident that the factors a, b, and ¢, here regarded
as firsts, are not so, except with respect to algebra, which does
not permit us to decompose thiem; they may, notwithstanding,
represent corapound numbers, but we here speak of them only
with respect to their general import.*

The coeflicients expressed in numbers are not considered in
estimating the degree of algebraic quantities ; we have regard only
to the letters.

It is evident (21, 25,) that when we multiply two simple quan-
tities the one by the other, the number which marks the degree
of the product is the sum of those which mark the degree of each
of the simple quantities.

28. The multiplication of compound quantities consists in that
of simple quantities, each term of the multiplicand and multiplier
being considered by itself; as in arithmetic we perform the
operation upon each figure of the numbers which we propose
to multiply.  (Arith. 33.) The particular products added to-
gether make up the whole product. But algebra presents a
circumstance which is not found in.numbers. These have no
negative terms or parts to be subtracted, the units, tens, hun-
dreds, &c. of which they consist, are always considered as
added together, and it is very evident, that the whole product
must be composed of the sum of the products of each part of
the multiplicand by each part of the multiplier.

* We apply the term dimensions, generally, to what I have here
called degrees, in conformity to the analogy already pointed out in
the note to page 29. This example sufficiently proves the absurdity
of the ancient nomenclature, borrowed from the circumstance, that
the products of 2 and 3 factors, measure respectively the areas of the
surfaces and the bulks of bodies, the former of which have two and
the latter three dimensions; but beyond this limit the correspond-
ence between the algebraic expressions and geometrical figures fails,
as.extension can have only three dimensions.
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The same is true of literal expressions when all the terms are
connected together by the sign +4-.

The product of atb
multiplied by c
is ac+be,

and is obtained by multiplying each part of the multiplicand by
the multiplier, and adding together the two particular products
acand bc. The operation is the same when the multiplicand
contains more than two parts.

If the multiplier is composed of several terms, it is manifest
that the product is made up of the sum of the products of the
multiplicand by each term of the multiplier.

The product of a+b
multiplied by c+d
. ac+be
8 +ad+bd

for by multiplying first @ 4 & by ¢, we obtain ac¢ -+ b ¢, then by
multiplying @ -6 by the second term d of the multiplier, we
have a d 4 b d, and the sum of the two results gives
«ct+bectad4-0d

for the whole.

29. When the multiplicand contains parts to be subtracted,
the products of these parts by the multiplier must be taken from
the others, or in other words, have the sign — prefixed to them.

For example,

the product of T a—b
multiplied by ¢
is ac—bc;

for each time that we take the entire quantity @, which was to
have been diminished by. 6 before the multiplication, we take the
quantity & too much; the product ac therefore, in which the
whole of « is taken as many times as is denoted by the number
¢, exceeds the product sought by the quantity b, taken as many
times as is denoted by the number ¢, that is by the product b ¢
we ought then to subtract b ¢ from a ¢, which gives, as above,
’ ac—bec.

The same reasoning will apply to each of the parts of the mul-
tiplicand, that are to be subtracted, whatever may be the num-
ber and whatever may be that of the terms of the multiplier, pro-
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vided they all have the sign 4. Recollecting that the terms
which have no sign are considered as having the sign 4, we see
by the examples, that the terms of the muliiplicand affected by
the sign + give a product affected by the sign -+, while those
which have the sign — give one having the sign —. Tt follows
from this, that when the multiplier has the sign -, the product has
the same sign as the corresponding part of the multiplicand.

30. The contrary takes place when the multiplier contains
parts to be subtracted; the products arising from these parts
must be put down with a sign, contrary to that which they
would have had by the above rule. This may be shown by the
following example.

Let the multiplicand be a—b
and the multiplier c—d

the product will be §—Z¢Cl:-%fi,

for the product of the multiplicand, by the first term of the mul-
tiplier, will be by the last example @ ¢c— b ¢; but by taking the
whole of ¢ for the multiplier instead of ¢ diminished by d, we
take the quantity @ — & so many times too much as is denoted
by the number d; so that the product a ¢ —bc¢ exceeds that
sought by the product of @ —b& by d. Now this last is, by what
has been said, ad—>5d, and in order to subtract it from the
first it is necessary to change the signs (20). We have then
ac—bc—ad-bd for the result required.

31. Agreeably to the above examples, we conclude, that the
multiplication of polynomials is performed by multiplying succes-
swvely, according to the rules given for simple quantities (21—26),
all the terms of the multiplicand by each term of the multsplier,
and by observing that each particular product must have the same
sign, as the corresponding part of the multiplicand, when the mul-
tiplier has the sign 4, and the contrary sign when the indwidual
multiplier has the sign —.

If we develope the different cases of this last rule, we shall find,

(1.) That a term having the sign 4, multiplied by a term hav-
ing the sign 4, gives a product having the sign -+ ;

(2.) That a term having the sign —, multiplied by a term hav-
ing the sign 4, gives a product which has the sign — ;

(8.) That a term having the sign 4-, multiplied by a term bav-
ing the sign —, gives a product which has the sign — ;

Alg. 5
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(4.) That a term having the sign —, multiplied by a term hav-
ing the sign —, gives a product which has the sign 4-.

It is evident from this table, that when the multiplicand and
multiplier have the same sign, the product has the sign -, and
that when they have different signs, the product has the sign —.

To facilitate the practice of the multiplication of polynomials
I have subjoined a recapitulation of the rules to be observed.

(1.) To determine the sign of each particular product according
to the rule just given ; this is the rule for the signs.

(2.) To form the coefficients by taking the product of those of
each multiplicand and multiplier (22); this is the rule for the co-
efficients.

(3.) To write in order, one after another, the different letters
contained n each multiplicand and multiplier (21) ; this is the
rule for the letters.

(4.) To give to the letters, common to the multiplicand and mul-
tiplier, an exponent equal to the sum of the exponents of these let-
ters in the multiplicand and multiplier (25); this is the rule for
the exponents.

32. The example below will illustrate all these rules
Multiplicand  5a* —2a%b 4 4 o202
Multiplier a® —4a2b J 20

Several

products —20a%b 4 8a®0%— 16003

547 —2a%b + 4a%02
4 10a*0°—4 a3 b* 4 8425

Result reduced 5a7-—22a6b+12a5b‘~’—6a4b3_4a354+8aebs_
The first line of the several products contains those of all the
terms of the multiplicand by the first term a® of the multiplier ;
this term being considered as having the sign 4, the products
which it gives have the same signs as the corresponding terms
of the multiplicand (31).

The first term 5 a* of the multiplicand having the sign plus,
we do not write that of the first term of the product, which would
be +; the coefficient 5 of a* being multiplied by the coefficient
1 of @ gives 5 for the coefficient of this product; the sum of
the two exponents of the letter a is 4 4 3, or 7, the first term of
the product then is 5 a”.

The second term — 2 ¢® b of the multiplicand having the sign
—, the product has the sign minus ; the coefficient 2 of @® b muls
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tiplied by the coefficient 1 of a3, gives 2 for the coeflicient of the
product ; the exponent of the letter ¢, common to the two terms
which we multiply, is 3 4+ 3, or 6, and we write after it the
letter b, which is found only in the multiplicand. The second
term of the product then is —2 a°®b.

The third term - 4 a®0° gives a product affected with the
sign -, and by the rules applied to the two preceding terms, we
find it to be 4 4 a®82.

The second line contains the products of all the terms of the
multiplicand by the second term — 4 a® b of the multiplier. This
last having the sign —, all the products which it gives must
have the signs contrary to those of the corresponding terms of
the multiplicand ; the coefficients, the letters, and the exponents
are determined as in the preceding line.

The third line contains the products of all the terms of the
multiplicand by the third term - 2% of the multiplier. This
term having the sign +-, all the products which it gives have the
same sign as the corresponding terms of the multiplicand.

After having formed all the several products which compose
the whole product, we examine carefully this last, to see whether
it does not contain similar terms; if it does, we reduce them
according to the rule (19), observing that two terms are similar,
which consist of the same letters under the same exponents. In
this example there are three reductions, viz;

— 2a%b and — 204854, which give —22af0;

+ 4a°b®and 4 8a’l?% which give 4 12 a°0?;

— 16 a* 6% and 4 10 a* b3, which give — 6 a* 6%
These reductions being made, we have for the result the last
line of the example.

See another example to exercise the learner, which is easily
performed after what has been said.
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33. From the manner of proceeding in multiplication, it is
evident that if all the terms of the multiplicand are of the same
degree (27), and those of the multiplier are also of the same
degree, all the terms of the product will be of a degree denoted
by the sum of the numbers, which mark the degree of the terms
of each of the factors.

In the first example, the multiplicand is of the fourth degree,
the multiplier of the third ; and the product is of the seventh.

In the second example, the multiplicand is of the sixth degree,
the multiplier of the third ; and the product is of the ninth.

Expressions of the kind just referred to, the terms of which
are all of the same degree, are called homogeneous expressions.
The above remark, with respect to their products, may serve to
prevent occasional errors, which one may commit by forgetting
sotne of the factors in the several parts of the multiplication.

34. Algebraic operations performed upon literal quantities, as
they permit us to see how the several parts of the quantities
concur to form the results, often make known some general pro-
perties of numbers independent of every system of notation.
The multiplications that follow, lead to conclusions of the great-
est importance, and of frequent use in the subsequent parts of
this work.

a5 a+b
a—b a4b
a? 4 ab a4 ab
—ab—b2 +ab4 b2
a? — b3 a? +2ab+ b2
a? 4+ 2ab + b2
a+b

a*+2a*b 4 ab?
+a2b+2ab® 4 0b°

a®43a2b43abdz 403
It appears from the first of these products, that the quantity
a + b, multiplied by @ — b, gives > — b7 ; whence it is evident
that, 1if’ we multiply the sum of two numbers by their difference, the
product will be the difference of the squares of these numbers.
If we take, for example, the sum 11 of the numbers 7 and 4,
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and multiply it by the difference 3 of these numbers, the product
3 X 11, or 33, will be equal to the difference between 49, the
square of 7, and 16, the square of 4.

By the second example, in which @ +- & is twice a factor, we
learn ; that the second power, or the square of a quantity composed
of two parts a and b contains the square of the first part, plus
double the product of the first part by the second, plus the square
of the second.

The third example, in which we have muhiplied the second
power of a0 by the first, shows; that, the third power or cube
of a quantity composed of two parts contains the cube of the first,
plus three times the square of the first multiplied by the second,
plus three times the first multiplied by the square of the second
plus the cube of the second.

35. As we have often occasion to decompose a quantity into
its factors, and as the algebraic operations are dispensed with,
when it can be done, in order to exhibit the forimation of the
quantities to be considered, as distinctly as possible, it is neces-
sary to fix upon some signs proper to indicate multiplication
between complex quantities.

We use indeed the marks of a parenthesis to comprehend the
factors of a product. The expression

(5a*—3a2b® 4 b*) (4ab® —ac? 4 d3) (b* —c2),
for example, indicates the product of the compound quantities

5a*—3a%b?+b% 4ab?—ac? +d?, and b2 — c2.
Bars were used formerly by some authors placed over the fac-
tors thus,

5at —3a? b 0% X 4ab? —ac® 4 d® X b2 —c?;
but as these may happen to be too long or too short, they are
liable to more uncertainty than the marks of a parenthesis,
which can never admit of any doubt with respect to the quantity
belonging to each factor. They have accordingly been preferred.

Of the Division of Algebraic Quantities.

36. AnceBraic division, like division in arithmetic, is to be
regarded as an operation designed to discover one of the factors
of a given product, when the other is known. According to this
definition, the quotient multiplied by the divisor must produce
anew the dividend.
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By applying what is here said to simple quantities we shall
see by art. 21., that the dividend is formed from the factors of the
divisor and those of the quotient ; whence, by suppressing in the
dividend all the factors which compose the divisor, the result will be
the quotient sought.

Let there be, for example, the simple quantity 72 s 03¢2 d to
be divided by the simple quantity 9 a3 bc?; according to the
rule above given, we must suppress in the first of these quantities
the factors of the second, which are respectively

9, a®, b, and c2.

It is necessary then, in order that the division may be perform-
ed, that these factors should be in the dividend. Taking them
in order, we see in the first place that the coefficient 9 of the divi-
sor, ought to be a factor of the coeflicient 72 of the dividend, or
that 9 ought to divide 72 without a remainder. This is in fact the
case, since 72 = 9 X 8. By suppressing then the factor 9, there
will remain the factor 8 for the coefficient of the quotient.

It follows moreover, from the rules of multiplication (25), that
the exponent 5 of tlie letter @ in the dividerd, is the sum of the
exponents belonging to the divisors and quotient; this last ex-
ponent therefore will be the difference between the two others, or
5—3=2. Thus the letter a has in the quotient the exponent
2. TFor the same reason, the letter & has in the quotient an expo-
nent equal to 3 — 1, or 2. The factor ¢* being common to the
dividend and divisor is to be suppressed, and we have

8a2b2d
for the quotient required.

The same will apply to every other case; we conclude then,
that, in order to cffect the division of simple quantities, the course
to be pursued is,

To divide the cocfficient of the dividend by that of the divisor ;

To suppress in the dividend the letters which are common to it
and the divisor, when they have the same exponent ; and when the
exponent is mot the same, to subiract the exponent of the divisor
Jrom that of the dividend, the remainder being the exponent to be
affived to the letter in the quotient ;

To write in the quotient the letters of the dividend which are not
in the dwisor.

37. 1f we apply the rule now given for obtaining the expo-
nent of the letters of the quotient, to a letter which has the same



40 Elements of Algebra.

exponent in the dividend and divisor, we shall find zero to be
the exponent which it ought to have in the quotient; a?® divided
by a®, for example, gives a°. To understand what is the im-
port of such an expression, it is necessary to go back to its ori-
gin and to consider, that if we represent the quotient arising
from the division of a quantity by itself, it ought to answer to
unity, which expresses how many times any quantity is contain-
ed in itself. It follows from this, that the expression a° is ¢ sym-
bol equivalent to unity, and may consequently be represented by 1.
We may then omit writing the letters which have zero for their
exponent, since each of them signifies nothing but unity. Thus
a® b ¢? divided by a® b c?, gives a' b° ¢°, which becomes a as is
very evident by suppressing the common factors of the dividend
and divisor. o .

We see by this, that the proposition, every quantity whick has
zero for its exponent, is equal to 1, is nothing, properly speaking,
but the explanation of a conclusion to which we are brought by
the common manner of writing the powers of quantities by ex-
ponents.

In order that the division may be performed, it is necessary,
1. that the divisor should have no letter which is not found in
the dividend ; 2. that the exponent of any letter in the divisor
should not exceed that of the same letter in the dividend ; 3.
that the coefficient of the divisor should exactly divide that of
the dividend.

38. When these conditions do not exist, the division can only
be indicated in the manner pointed out in the 2d article. Still
we should endeavour to simplify the fraction by suppressing
such factors, as are common to the dividend and divisor, if there
are any such; for (Arith. 57) it is manifest, that the theory of
arithmetical fractions rests upon principles which are indepen-
dent of every particular value of their terms, aad which would
apply to fractions represented by letiers, as well as to those which
are represented by numbers.

According to these principles, we in the first place suppress the
numerical factors common to the dividend and divisor, and then
the letters which are common to the dwidend and divisor, and which
have the same exponent in each. When the exponent is (not the
same tn each, we subtract the less from the greater, and affix the
remainder, as the exponent to the letter, which us written only in
that term of the fraction which has the highest exponent.
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The following example will illustrate this rule.

Let 48 a3 0% ¢* d be divided by 64 a® b°c* ¢; the quotient can
only be indicated in the form of a fraction

48 a3 b5 d

64a3b3cte’
But the coefficients 48 and 64 being divisible by 16, by sup-
pressing this common factor, the coefficient of the numerator be-
comes 3, and that of the denominator 4. The letter a having
the same exponent 3 in the two terms of the fraction, it follows
that a3 is a factor common to the dividend and divisor, and may
consequently be suppressed.

To find the number of factors 6 common to the two terms of
the fraction, we must divide the higher 4% by the lower &® ac-
cording to the rule above given, and the quotient b* shows, that
05 =103 X % Suppressing then the common factor 43 there will
remain in the numerator the factor 2.

With respect to the letter ¢, the higher factor being ¢* of the
denominator, if we divide it by ¢® we shall decompose it into
¢® X ¢?; and by suppressing the factor ¢* common to the two
terms, this letter disappears from the numerator, but will remain
in the denominator with the exponent 2.

Finally, the letters d and e will remain in their respective
places, since, in the state in which they are, they indicate no
factor common to both.

By these several operations the proposed fraction is reduced to

3b62d

Iae’
and it is the most simple expression of the quotient, except we
give numerical values to the letters; in which case it might be
further reduced by cancelling the common factors as before.

39. It ought to be remarked, that, if all the factors of the divi-
dend enter into the divisor, which besides contains others pecu-
liar to it, it is necessary after suppressing the former to put unity
in the place of the dividend, as the numerator of the fraction. In
this case indeed we may suppress all the terms of the ‘numera-
tor, or, in other words, divide the two terms of the fraction by
the numerator ; but this being divided by itself must give unity for
the quotient, which becomes the new numerator.

Suppose, for example, the fraction

da’bc
Ra*b%cd’
Alg., 6
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the factors 12, a,? b3, and ¢ may be divided respectively by the
factors 4, a2, b, and ¢, or we may divide the two terms of the
fraction by the numerator 4 a2 bc. Now the quantity 4 a2 b c,
divided by itself, gives 1 for the quotient, and the quantity
12 a2 b3 c d, divided by the first, gives by the above rules 3 62 d ;
the new fraction then is
1
302 d

40. It follows from the rules of multiplication, that when a
compound quantity is multiplied by a simple quantity, this last be-
comes a factor common to all the terms of the former. We may
make use of this observation to simplify fractions of which the
numerator and denominator are polynomials, having factors that are
common to all their terms.

Let there be the expression

6a*—3a2bc4 12 a2 ¢
9arb—15arc 24 ad
by examining the quantity 6 a*— 3a?bc -+ 12a?c?, we see
that the factor a2 is common to all the terms, since a* = a? X a2,
and that, besides, 6, 3, and 12 are divisible by 3 ; so that,

6a* — 3a%bc4-12a%¢? = 2a2 X 3a2 — bec X 3 a4 4c? X 3a®.
Also the denominator has for a common factor 3a2; for the
factors a? and 3 enter into all the terms, and we have
9a2b —15a%c+24a>=3bX3a®*—5cX 3a?+ 8a X3as.
Suppressing therefore the 3 a2 as often in the numerator as in
the denominator, the proposed fraction will become

2a2—bc -+ 4c?
3b—5¢c+8a °

41. I pass now to the case where the numerator and denomina-
tor are both compound, and in which one cannot perceive at first
whether the divisor is or is not a factor of the dividend.

As the divisor multiplied by the quotient must produce the
dividend, it is necessary that this last should contain all the sev-
eral products of each term of the divisor by each term of the
quotients and, if we could find the products arising from each
particular term of the divisor, by dividing them by this term,
which is known, we should obtain those of the quotient, after the
same maoner as in arithmetic we discover all the figures of the
quotient by dividing successively by the divisor the numbers,
which we regard as the several products of this divisor by the
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different figures of the quotient. But in numbers the several
products present themselves in order, beginning with the units at
the last place on the left, on account of the subordination estab-
lished between the units of each figure of the dividend according
to the rank which they hold. But as this is not the case in alge-
bra, we supply the want of such an arrangement by disposing all
the terms of the dividend and divisor in the order of the expo-
nents of the power of the same letter, beginning with the highest
and proceeding from left to right, as may be seen with reference to
the letter a in the quantities
5a7—22a8b + 120502 — 6 a* b3 — 4 a3 b* 1+ 8 a2 65,
5at—20a%b 4 4a®b?,

of which one is the product and the other the multiplicand in the
example of art. 32. This is called arranging the proposed quan-
tities.

When they are thus disposed, it is evident, that whatever be
the factor by which it is necessary to multiply the second to ob-
tain the first, the term 5 a7, with which this begins, results from
the multiplication of 5 a*, with which the other begins, by the
term in the factor sought, in which @ has the highest exponent,
and which takes the first place in this factor when the terms of it
are arranged with reference to the letter a. By dividing then
the simple quantity 5 a? by the simple quantity 5 a?, the quotient
a® will be the first term of the factor sought. Now as the entire
product ought by the rules of muliiplication to contain the several
particular products arising from the multiplication of the whole
multiplicand by each term of the multiplier, it follows that the
quantity here taken for the dividend, ought to contain the pro-
ducts of all the terms of the divisor, 5 a* — 2 a®b + 4 a® b%, by
the first term of the quotient a®; and consequently, if we subtract
from the dividend these products, which are 5 a”’ — 2 a® b 4 4 a® 8%,
the remainder — 20a%b + 8a%b%® — 6t b® — 4a30* + 8a®b5
will contain only those, which result from the multiplication of
the divisor by the second, third, &c. terms of the quotient.

The remainder then may be considered as a part of the divi-
dend, and its first term, in which a has the highest exponent, can-
not be obtained, otherwise than by the multiplication of the first
term of the divisor by the second term of the quotient. But the
first term of this part of the dividend having the sign —, it is
necessary to assign that which is to be prefixed to the corre-
sponding term of the quotient. 'This is easily done by the first
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rule art. 31., for the quantity — 20 a® b, being regarded as a part
of the product, having a sign contrary to that of the multiplicand
5 a4 it follows that the multiplier must have the sign —. Divi-
sion then being performed upon the simple quantities, — 20 a5 b
and 5 0% gives — 4a*b for the second term of the quotient.
If now we multiply this by all the terms of the divisor, and sub-
tract the product from the partial dividend, the remainder
4+ 10a*b3—4 a®b* 4 8a? b5 will contain only the products of
the third &ec. terms of the quotient.

Regarding this remainder as a new dividend, its first term
10 a*5® must be the product of the first term of the divisor by
the third of the quotient, and consequently this last is obtained
by dividing the simple quantities, 10 a* 83 and 5 a*, the one by
the other. The quotient 263 being multiplied by the whole of
the divisor furnishes products, the subtraction of which, exhausting
the remaining dividend, proves that the quotient has only three
terms.

If the question had been such as to require a greater number
of terms, they might evidently have been found like the preceding,
and if, as we have supposed, the dividend has the divisor for a
factor, the subtraction of the product of this divisor by the last
term of the quotient ought always to exhaust the corresponding
dividend.

42. To facilitate the practice of the above rules;

(1.) We dispose the dividend and divisor, as for the division of
numbers, by arranging them with reference to some letter, that is,
by writing the terms in the order of the exponents of this letter, be-
ginning with the highest ;

(2.) We divide the first term of the dividend by the first term
of the divisor, and write the result in the place of the quotient ;

(3.) We multiply the whole divisor by the term of the quotient
Just found, subtract 1t from the dividend, and reduce similar terms ;

(4.) We regard this remainder as a new dividend, the first term
of which we divide by the first term of the divisor, and write the
result as the second term of the quotient, and continue the operation
tll all the terms of the dividend are exhausted.

Recollecting that when a product has the same sign as the
multiplicand, the multiplier has the sign -, and, that when a
product has the coatrary sign to that of the multiplicand, the
multiplier has the sign — (31), we infer that, when the term of
the dividend and the first term of the divisor have the same sign, the



Division of Algebraic Quantities. 45

quotient ought to have the sign 4, and, if they have contrary signs,
the quotient ought to have the sign — ; this is the rule for the signs.

The individual parts of the operation are performed by the
rule for the division of simple quantities. '

We divide the coeffictent of the dividend by that of the divisor ;
this is the rule for the coefficients.

We write in the quotient the letters common to the diwvidend and
divisor with an exponent equal to the difference of the exponents of
these letters in the two terms, and the letters which belong only to
the dividend ; these are the rules for the letters and exponents.

43. To apply these rules to the quantities,

507 —22a5b 4+ 12a°02 — 6 a* 63— 4 a3 b* 4 8 a2 b5,
50t —2a%b+4 4a%b2,
which have been employed as an example above, we place them
as we place the dividend and divisor in arithmetic.

Dividend. Divisor.
5a7--22a8h4124a%2 —-6a%h 3—-4a3b*+4-8a2bd5a*—-2a3b+-4a2b?
—b5a"4 2a%— 4a%b* Quotient.

a’—4a2b++2b3

Rem.—QOa%-{—Sa%”—ﬁa“b 3—4a3b*4-Sa2b®
+20a°6—8a%h* 4-16a%h?

rem. +10a%h3—4a°b*4-8a32b3
—10a*4-b3%4a%b*—Ea2b®

0.

The sign of the first term 5 a7 of the dividend being the same
as that of 5 a?%, the first term of the divisor, the sign of the quo-
tient must be -}, but, as it is the first term, the sign is omitted.

By dividing 5 a” by 5 a*, we have for the quotient a®, which we
write under the divisor.

Multiplying successively the three terms of the divisor by the
first term a® of the quotient, and writing the products under the
corresponding terms of the dividend, the signs being changed to
denote their subtraction (20), we have the quantity

—5a"+2a5b—4a%b2,
which with the dividend being reduced, we obtain for a remainder
—20a%b +8a°b% —6a%b3—4a3b*4 8a2bd.

By continuing the division with this remainder, the first term
— 20 a®b, divided by 5a* will give for a quotient 4 a2 b, this
quotient having the sign —, as the dividend and divisor have
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different signs. Multiplying it by all the terms of the divisor
and changing the signs, we obtain the quantity
20056 —8a®b? 4- 16 a* b3,
which taken with the dividend and reduced, gives for a remainder
+ 10053 — 4 a2 d* 4 8 a2 (5.

Dividing the first term of this new dividend, 10 a* 43, by the
first term, 5 a%, of the divisor, and multiplying the whole divisor
by the result 4 2 62, writing the products under the dividend,
the signs being changed, and making the reduction, we find that
nothing remains, which shows that 4 2 62 is the last term of the
quotient sought. The quotient therefore has for its expression
a’—4a2 b 4 255,

44. It is proper to remark here, that in division, the multipli-
cation of the different terms of the quotient by the divisor often
produces terms that are not to be found in the dividend, and
which it is necessary to divide by the first term of the divisor.
These terms are such as destroy themselves, since the dividend
has been formed by the multiplication of the two factors, the
quotient and the divisor. See a remarkable example of these re-
ductions ;

Let a3 — b2 be divided by ¢ — 0.

Division. Multiplication.
a?—53 la —b a —b
—a*4a?bla®Fab4b° a® +ab4 b2

a?b—-53 a® —azb
—a%b+ab? 4+ arb—ab?

+ ab®—5bs
+ ab> —b3 _—
—ab? 4 b8 Result a®—b3.

0 .0

The first term a? of the dividend, divided by the first term a
of the divisor, gives for the quotient a? ; multiplying this quotient
by the divisor, and changing the signs of the products, we have
—a® 4 a? b; the first term — a® destroys the first term of the
dividend, but there remains the term a2 b, which is not found at
first in the dividend. As it contains the letter a, we can divide
it by the first term of the divisor, and obtain 4-a b. Multiplying
this quotient by the divisor, and changing the signs of the pro-
ducts, we have — a2 b 4~ a 2 ; the term — a2 b cancels the one
above it, but there remains the term - @ b2, which is not in the
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dividend. This being divided by @ gives for the quotient 4- b? ;
multiplying this quotient by the divisor and changing the signs, we
have —« b2 4~ b3 ; the first term — a b? destroys the first term
of the dividend, and the second 443 destroys the other — &2.

The mechanical part of the operation will be better understood,
if we look for a moment at the multiplication of the quotient
a® 4 ab 4 6% by the divisor ¢ — b. We see that all the terms
reproduced in the process of dividing are those which destroy each
other in the result of the multiplication.

45. It sometimes happens that the quantity, with reference to
which the arrangement is made, has the same power in several
terms both of the dividend and divisor. In this case, the terms
should be written in the same column, one under the other, the
remainibg ones being disposed with reference to another letter.

Let there be
—atde +b2 A — q2 64—116—-*-2(1462 —I—be—|—26462 + a® b4’
to be divided by a* — b2 — c2.

Arranging the first of these quantities with reference to the
letter a, we place in the same column the terms — a*b? and
+ 2 a* ¢? ; in another, the terms +- a? b4 and — a2 ¢* ; and in the
last column, the three terms -+ 08, +4 2&4%*c2, 4 b2 ¢!, dispos-
ing them with reference to the letter b, as may be seen in the next
page.

The first term a® of the dividend being divided by the first
term a? of the divisor, gives for the first term of the quotient
—a*; forming the products of this quotient by all the terms of
the divisor, changing the signs of the products in order to sub-
tract them from the dividend, and placing in the same column
the terms containing the same power of @, we have, after the
reduction of similar terms, the first remainder, which we take for
the second dividend.

The first term —2a*b? of this new dividend, being divided
by a2, gives for the second term of the quotient — 2 a® b2 ; form-
ing the products of this quotient by ‘all the terms of the divisor,
changing the signs of the products to indicate their subtraction
from the dividend, and placing in the same column the terms con-
taining the same power of @, we have, after the reduction of simi-
lar terms, the second remainder, which we take for the third
dividend.

The operation being continued in the same manner with the
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second remainder and the following ones, we shall have three
terms in the quotient. The last being multiplied by all the terms
of the divisor, furnishes products which, being subtracted from
the fourth remainder, exhaust it entirely. As the division admits
of being exactly performed, it follows, that the divisor is a factor
- of the dividend.

—ab— @b 4 a2 bt 40 a? —b* —c?

+2atc? —a2ct 42042\ "gi —2 a2 b2 —b°
+ b2ct 4+ a*ecr—b2¢?

+ a% —a* b2

—atc?

Ist. rem. — 2 a4 b2 4 a2 b* J- 15
+ atc?—aZct 4-2b4¢?
SR
+2ath? —2q2 50
—Q2a* b2

2d rem. 4 ac? — a%dt 4 }8
—-—2&21)2(:2-[—264(:3
— a2 ct +bch
— atc® 4 a?b2 e

+ a%et
3d rem. —az b L0
— a? bz c2 -]—264 c2?
b2 ¢t
+ a2 b4 _bﬁ
~— b4 e
4th rem. —a?b?c? 4 bt ¢
b2 ¢t
+a2 62 c? __b4 c2
___,b:z ct
0 0

46. The form under which a quantity appears, will sometimes
immediately suggest the factors into which it may be decom-
posed. If we have, for example,

8a5—4a3b%+4a®*4+2a3—b2 } 1,
to be divided by 2 @ —? 4 1; as the divisor forms the three
last terms of the dividend, it is only necessary to see if it is a fac-
tor of the three first ; but these have obviously for a common fac-
tor 4a°, for 8a°— 44382 +44° =4 a® (2a% — b2 4 1).
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The dividend then may be represented by
4a3(2a°—b* + 1; +2a%—b% 41,

or (20> —b2 4 1) (4a® 4 1).
The division is performed at once by suppressing the factor
2a®—b? 41, equal to the divisor, and the quotient will be
4a® 4 1.

After a little practice, methods of this kind will readily occur,
by which algebraic operations are abridged.

By frequent exercise in examples of this kind, the resolution of
a quantity into its factors is at length easily performed ; and it is
often rendered very conspicuous, when, instead of performing the
operations represented, they are only indicated.

Ezamples in Multiplication of Compound Quantities.
1. 3a43b+4c) X (3a+3b—4c)
=9a®+ 18ab 4902 —16~
2. (4a4+4b—3c—6d) X (4a+4b+3c+464d)
=166>+432ab+160*—9 *—36cd —36 d*.
3. (5a®>—3ab+70*) X (Ba—0b)
=1503—14a*b 424 ab® — 70
4. 5ab+3ac—4abec) X (Tab—18ac+42bcHd)
=35a202—69a*bc— 18ab?c+ Habd—54a*c?
+78ab® +3acd—8b0*c*—4bcd.
c(e+b+c+d) X (a—b—c—d)
= —0—2bc—2bd—F—2cd—d>
6. (—2a+3—) X (—3f—Ta+ )
=6af—9bf+3E2f+14a>—21ab+45ac
+3bF—c
7. Ba+4c—5d)4 (6b—Tn—06m) X (Sa+ 4c
—5d)—(6b—Tn—G6m)
=9a®+24ac—30ad+16c*—40cd + 25 d*
— 36024 84bn—490* +12mb— 84 nm— 36 m?

o

Examples in Division of Compound Quantities.

. (4ac—2ade)+~2a=2c—2de.

. (8a2—6ab)—2——-2a=—-4a+3b.

. (ab—ac)=—(—c)=a.

. (ac—bec+ad—bd)+(a—b)=c+d.
Alg. 7

O N e
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5. 40+ 6ab—4ax 4 9bx—152%) + (2a 4 3a)

=2a+3b—5bw

6. (42° 4+ 422 — 292 4 21) =+ (22 —3)
=224 52—"1.

7. (360> —12ab+ 40*—3bac+ 12bc+ 9c?) +—(6a
—2b—3¢)

=6a—2b—3c

8. (A®—4b") +—(a*+420°) = a*— 202

9. (a*—9%8—6abc®—ct)+—(®>—3ab—c?)
=a>43adJ &2

10. (640% 4-64ab+ 160> —9d>—48d— 6 4)— (Sa
+4b43d+8)
=8a+4+45—3d—8.

11. (32a° + 8% = (2a 4 0)
=16a*—8a*b 4+ 4a*0*—2ab® 4 4.

12. (184> +383ab+42ac—12ad—300° 4 124 b¢
+8bd—16c*—32c¢d)+—(6a+4 150 — 2c—4d)
=3a4—20b 48

Of Algebraic Fractions.

47. WueN we apply the rules of algebraic division to quanti-
ties, of which the one is not a factor of the other, we perceive
the impossibility of performing it, since in the course of the oper-
ation we arrive at a remainder, the first term of which is not
divisible by that of the divisor. See an example ;

a? +a3b+2[)3 a2+b2
—a® —ab? a 4 b

1st rem. atb—ab? 42503
—a2b—2b3

—ab? 4+ b3,
The first term, — a 62, of the second remainder cannot be divid-
ed by a2, the first term of the divisor; so that the process is
arrested at this point. We can however, as in arithmetic, annex
to the quotient a+b the fraction — pe +_Il};b3 having the re-
mainder for the numerator, and the divisor for the denominator ;

and the quotient will be
—ab?

a+b+ az__l_bz'
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It is evident, that the division must cease, when we come to a
remainder, the first term of which does not contain the letter with
reference to which the terms are arranged, or to a power inferior to
that of the same letter in the first term of the divisor.

48. When the algebraic division of the two quantities cannot
be performed, the expression of the quotient remains indicated
under the form of a fraction, having the dividend for the nume-
rator, and the divisor for the denominator; and to abridge it as
much as possible, we should see if the dividend and divisor have
not common factors, which may be cancelled (38). But when
the terms of the fraction are polynomials, the common factors are
not so easily found, as when they are simple quantities. They
are in general to be sought by a method analogous to that, which
is given in arithmetic for finding the greatest common divisor of
two numbers.

We ecannot assign the relative magpitudes of algebraic expres-
sions, as we do not give values to the letters which they contain ;
the denomination of greatest common divisor therefore, applied to
these expressions, ought not to be taken altogether in the same
sense as In arithmetic.

In algebra, we are to understand by the greatest common divisor
of two expressions, that which contains the most factors in all
its terms, or which is of the highest degree (27). Its determina-
tion rests, as in arithmetic, upon this principle ; Every common di-
visor to two quantities must divide the remainder after their division.

The demonstration given in arithmetic (art. 61.) is rendered
clearer by employing algebraic symbols. If we represent the
common divisor by I}, the two quantities proposed might be
expressed by the products 4D and BD, formed from the com-
mon divisor and the factor by which it is multiplied in each of
the quantities. 'This being supposed, if @ stands for the entire
quotient, and R for the remainder resulting from the division of
AD by BD, we have AD =BD x Q + R (Arith. 61) ; divid-

ing now the two members of the equation by ., we obtain
R
A=BQ+%;
and since the first member, which in this case must be composed

of the same terms, as the second, is entire, it must follow, that

R . . . - .
p s reduced to an expression without a divisor, that is to say,

that R is divisible by D.
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According to this principle, we begin, as in arithmetic, by
inguiring whether one of the quantities is not itself the divisor of the
other ; if the division cannot be exactly performed, we divide the
first divisor by the remainder, and so on; and that remainder,
which will exactly divide the preceding, will be the greatest common
divisor of the two quantities proposed. But it will be necessary, in
the divisions indicated, to have regard to what belongs to the na-
ture of algebraic quantities,

We are not, in the first place, to seek a common divisor of two
algebraic quantities, except when they have common letters ; and
we must select from them a letter, with reference to which the
proposed expressions are to be arranged, and that is to be taken
for the dividend in which this letter has the highest exponent, the
other being the divisor.

Let there be the two quantities

3a*—3a2b+4ab?—103,
4a2b—5ab? 4 b3,
which are already arranged with reference to the letter @ ; we
take the first for the dividend, and the second for the divisor.
A difficulty immediately presents itself, which we do not meet
with in numbers, and this is, that the first term of the divisor
will not exactly divide the first term of the dividend, on account
of the factors 4 and & in the one, which are not in the other. But
the letter b being common to all the terms of the divisor and not
to those of the dividend, it follows (40) that b is a factor of the
divisor, and that it is not of the dividend. Now every divisor
common to two quantities, can cousist only of fdctors which are
common to the one and to the other; if then there be such a di-
visor with respect to the two quantities proposed, it is to be looked
for among "the factors of the quantity 4a? —5ab--562, which
remains of the quantity 442 b—5ab? 4 b3, after suppressing
b; so that the question reduces itself to finding the greatest com-
mon divisor of the two quantities ‘
3a3—3a2d 4 ab? —b3,
4a? —5ab 0.

For the same reason that we may cancel in one of the pro-
posed quantities the factor & which is not in the other, we may
likewise introduce into this a new factor, provided it is not a
factor of the first. By this step, the greatest common divisor,
which can consist only of terms common to both, will not be
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affected. Availing myself of this principle, I multiply the quan-
tity 3a® —3a* b+ ab? —b® by 4, which is not a factor of
the quantity 4 a® — 5 a b 4 b2, in order to render the first term of
the one divisible by the first term of the other.

I shall thus have for the dividend, the quantity

124% —12a2 b+ 4a b —4b3,
for the divisor the quantity
42 —5ab 02,
and the quotient will be 3 a.

Multiplying the divisor by this quotient, and subtracting the pro-

duct from the dividend, I have for a remainder
3a2b+ab*—40%;

a quantity which, according to the principle stated at the com-

mencement of this article, must have with 4 a2 — 5 a b 4 b2, the

same greatest common divisor as the first.

Profiting by the remarks made above, I suppress the factor &,
common to all the terms of this remainder, and multiply it by 4,
in order to render the first term divisible by that of the divisor ; 1
have then for a dividend, the quantity

12a° +4ab— 1602,
and for a divisor, the quantity
402 —5ab40b2;
and the quotient thence arising is 3.

Multiplying the divisor by the quotient, and subtracting the pro-

duct from the dividend, we obtain the remainder
19ab—1902,

and the question is reduced to finding the greatest common divisor
to this quantity, and

402 —5ab4 b2,
But the letter @, with reference to wich the division is made, not
being in the remainder, except of the first degree, while it is of
the second degree in the divisor, it is this which must be taken for
the dividend, and the remainder must be made the divisor.

Before beginning this new division, I expunge from the divisor
19 ab—19 b2, the factor 19 b, common to both the terms, and
which is not a factor of the dividend ; I have then for a dividend,
the quantity

4q°—5ab4b2
and for a divisor
a—b.



54 Elements of Algebra.

The division leaves no remainder; so that a — b is the greatest
common divisor required.

By retracing these steps, we may prove d posteriori, that the
quantity « — b must exactly divide the two quantities proposed, and
that it is the most compounded of those which will do it. In di-
viding by ¢ — & the two quantities proposed,

3a®—3a2b4ab?—02 4a2b—5ab2 + b3,
we resolve them as follows ;
(3a® +62) (a—0b), (4ab—102) (a—10).

49. When the quantity, which we take for a divisor, contains
several terms having the letter, with reference to which the
arrangement is made, of the same degree, there are precautions
to be used, without which the operation would not terminate.
See an example of this.

Let there be the quantities

a*b+ac?—d® ab—ac4-d;
if we make the preparation as for common division,

a?b+ac?—d®* | ab—acH d?

—atbdatc—ad® g T T
Rem.a*c+ac? —ad? —d?,
by dividing, first, a2 b by a b, we have for the quotient ¢ ; multi-
plying the divisor by this quotient, and subtracting the products
from the dividend, the remainder will contain a new term, in
which a will be of the ‘second degree, namely, a® ¢, arising from
the product of — a¢ by @. Thus no progress has been made ;
for by taking the remainder
a*ctac?—ad® —d?
for a dividend, and multiplying by b, to render the division possible
by a b, we have
a*betabe? —abd*—bd? ab—ac+td?

—a*bect a2 ¢ —acd? rr
Rem.a? ¢* 4 abe? —acd* —abd* —bd?,
and the term — a ¢ produces still a term "a? ¢2, in which a is of
the second degree.

To avoid this inconvenience, it must be observed, that the
divisor ab—ac 4 d3 = a (b—c¢) 4 d?, by uniting the terms
ab—acinone; and, for the sake of shortening the operation,
making b-— ¢ = m, we have for the divisor am - d2 ; but then
the whole dividend must be multiplied by the factor m, to make
a new dividend, the first term of which may be divided by am,
the first term of the divisor ; the operation then becomes
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atbm+tactm—dim| amd?
—a*bm—abd® ) W
Istrem. —a bd? J~ac2m—d3m
—acim—c? d?

2d rem. —abd? —c*d? —d3m.
The terms involving * now disappear from the dividend, and
there remain only the terms which have the first power of a.
To make these disappear, we first divide the term a¢? m by a m,
and it gives for a quotient ¢?; multiplying the divisor by this
quotient, and subtracting the products from the dividend, we obtain
the second remainder. Taking this second remainder for a new
dividend, and suppressing the factor d2, which is not a factor of the
divisor, we have
—ab—c? —dm,
which being multiplied anew by m, becomes
—abm—c*m—dm? am -+ d2
+abm+bd? T
Rem. 4 bd® %cﬁ m—d m?2.

The remainder b d? — ¢2 m — d m? of this last division, not in-
volving a, it follows, that if the proposed quantities have a common
divisor, it is independent of the letter a.

Having arrived at this point, we can continue the division no
longer with reference to the letter a; but it will be observed,
that if there be a common divisor, independent of g, to the quan-
tities b d* — ¢? m — d m® and @ m 4 d?, it must divide separately
the two parts @ m and d* of the divisor; for if a quantity is arrang-
ed with reference to the powers of the letter a, every divisor of
this quantity, independent of a, must divide separately the quanti-
ties multiplied by the different powers of this letter.

To be convinced of this, we need only observe, that, in this
case, each of the quantities proposed must be the product of a
quantity depending on a, and of the common divisor, which does
not depend upon it. Now if we have, for example, the expression

Aa*r 4+ Ba® 4 C?a* +Da+E,
in which the letters A, B, C, D, E, designate any quantities
whatever, independent of @, and it be multiplied by a quantity J,
also independent of a, the product
MA at + MB a® + MC a? + MD a 4+ ME,

arranged with reference to @, will contain still the same powers
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of a as before ; but the coefficient of each of these powers will be
a multiple of .JM.
This being supposed, if we restore the quantity (b—c) in the
place of m, we have the quantities
bd* —c2 (b—c) —d(b—c)2,
a(b—c) +d*;
and it is evident, that 5 —¢ and d?® have no common factor ;
the two quantities then under consideration have not a common
divisor.

If it were not evident by mere inspection, that there is no
common divisor between b — ¢ and d2, it would be necessary to
seek their greatest common divisor by arranging them with refer-
ence to the same letter, and then to see if it would not also divide
the quantity

bd* —c¢* (b—c) —d(b—c)=.

50. Instead of putting off to the end of the operation, the inves-
tigation of the greatest common divisor independent of the letter
with reference to which the quantities are arranged, it is less
trouble to seek it at first, because, for the most part, the operation
becomes more complicated at each step as we advance, and the
process is rendered more difficult.

Let there be, for example, the quantities

at b2 +a3 b3 + bac2 —atc2—a3bc2 —p2 ca’
atb 4 ab? 0% —atc—abc—0b2c;
having arranged them with reference to the letter a, we have
(62 —c?) a* 4 (63 —be?) a® 4 b* ¢z —b2 ¢4,
(b—c) a2 4 (b2—bc) a4 b°—b2c;
I observe, in the first place, that if they have a common divisor
which is independent of @, it must divide each of the quantities,
multiplied by the different powers of a (49), as well as the
quantities 4 ¢ — b® ¢* and b3 —b% ¢, which do not contain this
letter.

The question is reduced then to finding the common divisors of
the two quantities b2 — ¢? and b-—¢, and determining whether
among these divisors there is to be found one which will divide at
the same time

b —bec? and B2 —bc, b4 ¢c2 —D2c* and 4% — b2 c.
Dividing b% —¢? by 6 —¢, we find an exact quotient b 4-c;
b—c then is a common divisor of the quantities 52 —¢? and
b — ¢, which evidently admit of no other, since the quantity b —c



Algebraic Factions. 57

is divisible only by itself and by unity. We must now see wheth-
erb—c will divide the other quantities referred to above, or
whether it will divide the two quantities proposed ; it is found that
it will, and it gives
(b+c)a* + (b2 4 bc) a® 4 b3c2 4 b2 ¢3,
a? 4 ba+4b2.

To bring these last expressions to the greatest degree of sim-
plicity, we should see if the first is not divisible by & + c; it ap-
pears upon trial that it is, and we have only to find a common
divisor to the quantities

a* +baz J- b2 c?
a? +ba 4 b2 .

By proceeding with these as the rule prescribes, we come;
after the second division, to a remainder containing the letter @ of
the first power only ; and as this remainder is not the common
divisor, we conclude that the letter ¢ does not make a part of the
common divisor sought, which therefore can consist only of the
factor b —c.

If, beside this common divisor, another had been found, involv=
ing the quantity a, it would have been necessary to multiply these
two divisors together to obtain the common divisor sought.

These remarks will enable the learner, after a little practice in
analysis, to find in every case the greatest common divisor. He
will determine without difficulty that the quantities

6a®+15a*b—4a%c? — 10a2 b c3,
9a36—27a%2bc—=6abc? 4 185,
have for their greatest common divisor the quantity 3 a* — 2 ¢3.

51. The four fundamental operations, addition, subtraction,
multiplication, and division, we perform in algebra as in arithmetic,
observing merely to proceed, in the operations prescribed by the
rules of arithmetic, according to the methods given for algebraic
quantities. I shall, therefore, merely suggest these methods,
giving an example of the application of each. I shall begin as I
did in arithmetic, with the multiplication and division of fractions;
as they require no preparatory transformations.

(1.) For multiplication, we have

a ac .
FXc=7 (Arith. 53),

a 4
53X a=
Alg. 8

5 (Aritk. 70).
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(2. ) For division,
5 2 divided by ¢, glves — 01 - (./97 ith. 54, 70),

3 < divided by ;l’ gives %— X %l ae (l (./1 rith. 73).

(8.) The fractions %, %, being reduced to the same denomina-
tor, become respectively
ad 2¢ (ﬂmk 79).

The fractions,
a c e g
Pa PR
by the same reduction, become respectively
adfh cbfh cbdh gbdf
bdfl bdfr bdfik bdfh
52. I have given, in art. 79. of arithmetic, a process for obtain-
ing, in certain cases, a dencminator more simple, than that which
results from the general rule ; it may be much simplified by means
of algebraic symbols, as we shall see.

. a o .
If; for example, we have the two fractions it is easy to

d
E) 137')
see that the two denominators would be the same, if f were a
factor of the first, and ¢ a factor of the second ; we multiply then

the two, terms of the first fraction by /> and the two terms of the

N . . af cd . . abf
second by ¢, which gives Wand bop more simple than boof

and l_zl%f’ obtained by multiplying by the original denominators.

In general, to form the common denominator, we collect into one
product all the different factors raised to the highest power found in
the denominators of the proposed fractions ; and it remains only to
multiply the numerator of each fraction by the factors of this pro-
duct, which are wanting in the denominator of the ﬁaction.

. . a
Having, for example, the fractions Yot , and Ifmm the
: f

product 4% ¢ fg; I multiply the numerator of the ﬁrst fraction
by fg, that of the second by beg, that of third by 42 f, and I
obtain

af g bedg b2ef

biefg” brefg’ biefg
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53. The sum of the fractions
a b c
& d @
which have the same denominator, or

d+ +d ”+b+c (Arith. 80).

The difference of the fracuons
a b
7 and 7
which have the same denominator, or
a b _a—b
d~d— ~d
‘The whole of @ added to the fraction é, or the expression

a-l——g— +_ ‘”+b(ﬂnth 81).

Also, the expression
b _ac b _ac—Db
o=

4 —— = — — —l—
c c [
Reciprocally,

. ac+b_ ac b __ b

the expression . = + —=a + o
. ac—b ac b b
the expression ————= —-
[ c c

The terms of the preceding fractions were simple quantities ; but
if we had fractions, the terms of which were polynomials, we
should have to perform, by the rules given for compound quanti-
ties, the operations indicated upon simple quantities ; it is thus that
we have
a®>+b a—b__ (a®402) (a—0b) a3+ab2——a9b—b3

c¥d Xe—dT kD e—d) — o—a
The quotient of the {raction
2 p—
@ ibd divided by 2=,
L @b emd (@4 1?) (c—d) _ atetbie—a’d—btd

c+d " a—b" (c4d)(e—b) ~ actad—bc—bd’
and so of other operations.
54. Understanding what precedes, we can resolve an equation
of the first degree, however complicated.
If we have, for example, the equation
a40) (z—c ac
(—i—a«):_——b—————) 4 4b=2 w—-—s.a_l_z,
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we begin by making the denominators to disappear, indicating only
the operations ; it becomes then
(a+b)(2—c)(3a+b)+4b(a-d)(3a—+-b)=2x(a--b)(3a-+-b)-ac(a-b) ;
performing the multiplications, we have
3a2x 4 4abx 4 b2z — 3a2c — 4abc—b2 c412a2b—8ab? —4b3

=6a2r—4abr—2bc—a%c+abc;
transposing to one member all the terms involving «, it becomes
—3a?2+4-8abx+-3b2x = 2a%c 4 babc +b2c—12a2b-}-8ab? 4-4b%,
from which we deduce

2atc+5abctb2c—12a2 b4 8ab? + 4b3
—3a2+48ab+430b2

Ezxamples in Division in which the Divisor is not an Aliquot Part
of the Dividend.

Lls=(1—b)=14b4b2+ bt ......
2. 1—:—(1+b):1——-b+62-—b3+b4 .....
3. c—:—(a—-b):S—i—%—:—}— +b3"+ e
b c
foer(att)=mtp B By

5 14 az)=~(1—2)= 1+1%fz=1+2x+2a9’+2w3+

Ezamples in the Reduction of Fractions.

12ad+5bc20bdh
“5 +ath= 0bd

Q

c_t_ & _
2gta—F—ai—*
_adfhtbofh—bdeh—bdfg—bdfhk

bdfh
s 1-jriotmggrer
d a—b)lefg—dg—
4.a-b_-e7__.5§_( )J:ig g—cf
B et2ab—gac— IR IS
2ab3—-bcz+6abcz_a3

b2 —bec

5a4+6c A 5a—6¢
- ;- + 3 =ba,
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" deg+n __ 4ecg—n _

3 o) =n.

3 3a-—-4b_2a—b——c+l5a—4c_85a—20b
‘ 7 3 12 - 84

9 3a+2b 5bd 2a—3d l2ad+3bd+2a+3d
: c dcd - 4cd

2
10. @ + z __a®4-28

at+z UV a—z" a?—2?

11. 3a+422 5a——-z+ a3—4a?z—1laz? — 218
a7z a— 2z 2z (a2 —z?)

12. az ____a——:z=3az——-a3-—z2

a? —22 a4z a? — 22
13. a3 — ab_+ b =a3+ab-“-+b3

@top  @gbp Tags= (@+op

3h 2h+2 5
14. (h—2z)2 +(/L—|—$)E‘/—L—-2t) h—=x
0k z—22 22

— (h—z) (* —dhaofda7)

Ezamples in the Reduction of Fractional Expressions to their Sim-
plest Terms.
1 ar 4+ z? _a+z;_
" 3br—cx T 3b—c’

14a2—"7ab _T7a
10ac —5bc ™ 5¢’
12032 4 2a2 25 __ 24223
18ab2x }- 36222 352
5a® +5az __ 5a

4, = .
a? — 2 a—z
5 ad—a3  a® 4azr-4-2?
(a—2): T a—zx
n3—2n? n?
6 —

"nd—An447 n—2
2?2 +2%2—3 _z—1
22 452—6 z42°
8 223482242 2241
' g8—ga —2z T 2—2°

9 a4 P13 a2 b —abcr+ 72t
¢ a3bh® — ¢3z2 -

ab—cx
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10 223— (8c4d+42)22 4 (Bc+d)z __ 2z —3c—d
) 1t —z T 241
11 a*+b24c? 4-2ab+2%ac+2ec__adb+c
) a? —b2 —c2—2b¢ Ta—b—¢
12 a?—3ab+act2b6>—2bc__ a—2b
) a?— 0% +2bc—¢? T at+b—<¢

202222+ 2022 —at— bt — ¢t
_(a4b) (a+tb+c)(a+b—rc)
= 1R E—(@— 0 — @)
. a-tb
T (cta—b)(b—a+c)

Examples in the Multiplication of Fractional Expressions.

1.

>

-

1 3ac c 32

—X—X— -5
2

5a 13 ¢ 6];

b —2d big +7"’>><

3 a? 3ac 18a k 2la

=pd " 0& Bbdg T 5
L g eor)x (F )

. 49g 102 7f2  6f2
=35 +21g +_§—_"/z a
3(12 Qab
(z9 sz 51;y

_3at 19_a3b 21a20* 9ab® b
T2 T 1023y T B5aZyr T 10zy3 Ty

Examples in the Division of Fractional Expressions.

2
Zb———'.—-é:ab.

c c
ab+1a  a 0245623
b+c b btc

.(3"3 ————8m+9) <2+1)_3w2 .

a*crt—cidatdrt —da® | a*1t—23 _ c4d

ac—ad+4cx—dz Y oa4z T c—d
24a’c—6b>c—4a2db2d | 40*—b> bc—d
Rab8an{-4b3+bn  Batb 4bfn
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(3a2 7ab 2lac 503 831)0 30'-’)

—e T T T2 T8 %

. 53 f h Ofz  21h? l)ha;
N A +%)

,__311_{_ )._Sf __,_ﬁ_i_S

(b d+ZZ b“f de) < d)ﬂ_
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b ¢
ate

Equations of the First Degree with One Unknown Quantity.-

I.
2.

3.

10.
11.

12.

13.

14.

8r—56=13—"Tx. =11
183 —2=22—83. x=09.

12‘—}—3&'—6——7—;_%’ —5%. +=1391.
3z 7
+10 + - : —?:——15. x = 662.
16
7

2z-—5 19 —2 10x—7 5
-+ =

s 3 9 2

6z+8 5z+4+3 27—4z 3249

—_— = — . 2 =0.

Il 2 3 2
8z—13 1247z

ATt S — g

112 —17

—7r—_33_2+%7 .z =15,

10 8

3252 —5007T—2=02--0.342. v =2-010424.

r=a-+ d_{_ff_l _("d']ctbc})"

(h+g)bdf

7"'7 +T"g=h' YT bdeFof Fadf

z dz _ __ac(l—3ab)
a—l———c———{— 3ab=0. w_———c—__—Td——

@ . _c(b—c) (d—a)
b_c—dc._bw—ac. x= Py Sy et

3
o — = —la 4412} —gm—316%. x = —808¢L.
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ab : 1 ab—1
15. —x—_.bc-[-d-}—:;. w__m.
_ 1 (a — z) _a(m—3c+3a)
0 e=at+ e = "o
a(d*4-22) _ac+azx ___d
W ——=—"7a =3
18, " _ Sfam _cd—af af—cd

a+bz dtezr *Thf—ce ce—bf
19. 3a—-5z+2a—z=a+f_d

a—c d a—c

& .

_d(f—2a)—2a(a—c)

F=E =@ =n—5d"

ac

20. (a+2) (b+2)—a(® +c):gg—f+w”. T =4

Of Questions having two Unknown Quantities, and of Negative
Quantities.

55. THE questions, which we have hitherto considered, involve
only one unknown quantity, by means of which, with the known
quantities, are expressed all the conditions of the question. It is
often more convenient, in some questions, to employ two unknown
quantities ; but then there must be, either expressed orimplied, two
conditions, in order to form two equations, without which the two
unknown quantities cannot be determined at the same time.

The question in art. 3., especially as it is enunciated in art. 4.,
presents itself naturally with two unknown quantities, that is, with
both the numbers sought. Indeed, if we denote

the least by ,
the greatest by y,
their sum by q,
their difference by &,
we have, by the enunciation of the question,
x4y =a,
y—ax =0

Each of these two equations being considered by itself, we can
determine one of the unknown quantities. If we take the second,
for example, we deduce the value of y, which is

y=>b+uz,
a value, which seems at first to teach us nothing with regard to
what we are seeking, since it contains the quantity , which is
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not given ; but if; instead of the unknown quantity y in the first
equation, we put this, its equi'valent; the equation, containing now
only one unknown quantity , will give the value of z by the pro-
cess already taught.

We have in fact by this substitution,

x+b+a=aq,
or 2¢ 4+ b =naq,
or lastly, = a;b;

and putting this value of w in the expression for y;
y:b—{—x:b—{—a;b:?—%——b;

we have then for the two unknown numbers the same expressions

as in art. 3.

It is easy to sce indeed, that the above solution does not differ
essentially {rom that of art. 3.; only I have supposed and resolved
the second equation y — & = b, which [ contented myself witly
enunciating in common language in the article cited ; and from it
I deduced, without algebraic calculation, that the greater number
was ¢ + b.

56. 1 take another question.

A laborer having worked for a person 12 days, and having
with him, during the first 7 days, his wife and son, recewed 74
Srancs ; he worked afterward with the same person 8 days more,
during 5 of which, he had with him kis wife and son, and he re-
ceived at this time 50 francs ; how much did he earn per day him=
selfy and how much did his wife and son earn ?

Let x be the daily wages of the man,

y that of his wife and son ;
12 days’ work of the man will amount to 12 ,
7 days’ work of his wife and son, Ty;
we have then by the first statement of the question,
1204+ 7y="14;
8 days’ work of the man will give 8,
and 5 days’ work of his wife and son 593
we have then by the second statement
8x 4+ 5y = 50.

Proceeding as in the preceding question, we take the value of

y in the first equation, which is

Alg. 9
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74— 123
y=—""7w
and substitute this value in the second, multiplying it by 5, the co-

efficient, and it becomes
370 — 60 z

8ax -4 — = 50,
an equation, which contains only the unknown quantity . By re-
ducing it we have
56 4 370 — 60 & = 350,
370 — 42 =350;
transposing — 4 @ to the second member, and 350 to the first, we
obtain
370 —350 = 4

20=4«x
=
5= .

Knowing @, which we have just found equal to 5, if we place
this value in the formula

74 —12z
y=— 7 ’
the second member will be determined, for we have
74— 12x5 __ 74—60 14
Y= w7 = 7 == = 2;
thus y = 2.

The man then earned 5 francs per day, while his wife and son
earned only 2.

57. The reader has perhaps observed, that in resolving the
above equation 370 — 4 2 = 350, I have transposed 4 z to the
second member. I have proceeded thus to avoid a slight diffi-
culty, that would otherwise have occurred, and which I will now
explain.

By leaving 4 « in the first member, and transposing 370 to the
second, we have

—4 2 =2350—370;
and reducing the second according to the rule in art. 19., there
will result from it
—4 = —20.

But as we have avoided, in the preceding article, the sign —,
which affects the quantity 4 x, by transposing this quantity to the
other member ; and as in like manner the quantity 350 — 370 be-
comes by transposition 870 — 350 ; and since a quantity, by being



Equations with Two Unknown Quantities. 67

thus transferred from one member to the other, changes the sign
(10), it is evident that we may come to the same result by simply
changing the sign of each of the quantities — 4 2, 4- 350 — 370,
which gives

4 ¢ = — 350+ 370,
or 4x=  370— 350,
which is the same as

370 — 350 = 4 a.
We might also change the signs after reduction, and the equa-
tion
—4r=—20
becomes, as above,
42 = 20.

It follows from this, that we may transpose indifferently, to one
member or to the other, all the terms involving the unknown quan-
tity, observing merely to change the signs of the two members in
the result, when the unknown quantity has the sign —.

58. Having undertaken, by means of letters, a general solution
of the problem of art. 56., I will now examine a particular case.
I suppose the first sum received by the laborer to be 46 francs,
and the second 30, the other circumstances remaining as before ;
the equations of the question will then be

12 x4 7Ty = 46,
. 8 x4 5y = 30.
The first gives

46— 12 2
y=—-= 5
multiplying this value by 5, in order to substitute it in the place of
5y, in the second, we have

230 —
8z 4 3 - 60z=30;

the denominator being made to disappear, it becomes

56 © 4 230 — 60 2 = 210,
or 56 x — 60 = 210 — 230,
or —4 2 = — 20,
and the signs being changed agreeably to what has just been re-
marked,

4 = 20,
1 = ZIO =
If we substitute this value instead of x in the expression for y, it
will become
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46 — 60
y=—=
or y ="
7

Now how are we to interpret the sign —, which affects the in-
sulated quantity 14? We understand its import, when there are
two quantities separated from each other by the sign —, and
when the quantity to be subtracted is less than that from which
it is to be taken; but how can we subtract a quantity when it is
not connected with another in the member where it is found?
To clear up this difficulty, it is best to go back to the equations,
which express the conditions of the question; for the nearer we
approach to the enunciation, the closer shall we bring together
the circumstances which have given rise to the present uncer-
tainty.

I resume the equation

120 + 7Ty = 46;
I put in the place of = its value 5, and it becomes

60 7y = 46.
This equation, by mere inspection, presents an absurdity. Itis
impossible to make the number 46 by adding any thing to the
number 60, which exceeds it already.

I take also the second equation,

8x 4 5y = 30,
and putting 5 in the place of «, I find

404 5y = 30;
the same absurdity as befove, since the number 30 is to be formed
by adding something to the number 40.

Now the quantities 12 or 60 in the first equation, 8 x or 40
in the second, represent what the laborer earned by his own
work ; the quantities 7 y and 5y stand for the earnings of his wife
and son, while the numbers 46 and 30 express the sum given as
the common wages of the three; we must see then at once in
what consists the absurdity.

According to the question, the laborer earned more by himself,
than he did by the assistance of his wife and son ; it is impossible
then to consider what is allowed to the woman and son, as aug-
menting the pay of the laborer.

But if, instead of counting the allowance made to the two latter
persons as positive, we regard it as a charge placed to the account
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of the laborer, then it would be necessary to deduct it from his
wages ; and the equations would no longer involve a contradiction,
as they would become

60 — 7y = 46,

40 — 5y = 30;
we deduce from the one as well as from the other

y=2;

and we conclude from it, that if the laborer earned 5 francs per
day, his wife and son were the occasion of an expense of 2 francs,
which may otherwise be proved thus.

For 12 days’ labor he received

5 X 12 or 6O francs;
the expense of his wife and son for 7 days is

2 X 7or 14 francs;
there remain then 46 francs.

For 8 days’ labor he receives

5 % 8 or 40 francs ;
the expense of his wife and son for 5 days is

-2 X 5 or 10 francs;
there remain 30 francs.

It is very clear then, that in order to render the proposed prob-
blem with the first conditions possible, instead of the enunciation
in article 56., we must substitute this;

A laborer worked for a person 12 days, having had with him
the first 7 days, his wife and son at a certmin expense, and he re-
cewed 46 francs ; he worked afterwards 8 days, during 5 of which
he had with kim his wife and son at an cxpense as before, and he
recewed 30 francs. It is required to find how much he earned per
day, and what was the sum charged him per day on account of his
wife and son.

Calling « the daily wages of the laborer, and y the daily
expense of wife and son, the equations of the problem will evi-
dently be

120 —7y=146
8x—5by=30;
and being resolved after the manner of those in art. 56., they
will give
x =5 francs, y =2 francs.

59. In every case, where we find, for the value of the unknown

quantity, a number affected with the sign —, we can rectify the
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enunciation in a manner analogous to the preceding, by exam-
ining, with care, what that quantity is, among those which are
additive in the first equation, which ought to be subtractive in
the second ; hat algebra supersedes the use of every inquiry of
this kind, when we have learnt to make a proper use of expres-
sions affected with the sign —; for these expressions, being
deduced from the equations of the problem, must satisfy those
equations ; that is to say, by subjecting them to the operations
indicated in the equation, we ought to find for the first member

7

a value equal to that of the second. Thus the expression

drawn from the equations

12 2 4 7y = 46,

8 x4 5y =30,
must, consistently with the value of @ = 5, as deduced from these
same equations, verify them both.

The substitution of the value of x gives, in the first place,

60 + 7 y = 46,
40 4 5 y = 30.

7
and for this purpose we must multiply by 7 and by 5, having
regard to the sign —, with which the numerator of the fraction is
affected.

If we apply the rule relative to the signs given in art. 42. for
division, we have

It remains to make the substitution of in the place of y;

— 14
— = 2;
besides, by the rule for the signs in multiplication, we find
7T X —2=— 14,
5 X —2=—10.

Hence the equations

60 + 7y =46, and 40 4 5y = 30,
become respectively

60 — 14 = 46, and 40— 10 = 30,
and are verified, not by adding the two parts of the first member,
but in reality by subtracting the second from the first, as was done
above, after considering the proper import of the equations.

60. The problem in art. 58. does not admit of a solution in

the sense in which it is first enunciated ; that is to say, by addi-
tion, or regarding as an accession the sum considered with
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reference to the wife and son of the laberer; neither does the
second enunciation consist with the data of the problem in art.
56.

If we were to consider in this case y, as expressing a deduction,

the equations thus obtained
120 — Ty =174,

8x— 5y = 50,

would give
r=5, and y= ;71—%;

and the substitution of the value of x would immediately change
the equations to

60 — 7y = 74,

40 — 5y = 50.

The absurdity of these results is precisely contrary to that of
the results in art. 58., since it relates to remainders greater than
the numbers 60 and 40, from which the quantities 7y and 5y are
to be subtracted.

The sign minus, which belongs to the expression of ¥, implies
an absurdity ; but this is not all, it does it away also ; for, accord-
ing to the rule for the signs,

and — T X —2 =+ 14,

Thus the equations

60 —7y =174, 40—5y= 50,
become

60 4 14 =74, 40 4 10 = 50,
and are verified by addition; consequently, the quantities — 7 g
and — 5 y, transformed into - 14, + 10, instead of expressing
expenses incurred by the laborer, are regarded asa real gain.
We are brought back then in this case, also to the true enunciation
of the question.

61. We perceive by the preceding examples, that there may be,
wn the enunciations of a problem of the first degree, certain contra-
dictions, which algebra not only makes known, but points out also
how they may be reconciled, by rendering subtractive certain quan-
tities which had been regarded as additive, or additive certain
quantities which had been regarded as subtractive, or by giving to
the unknown quantities values affected with the sign —.
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See then what is to be understood, when we speak of values
affected by the sign —, and of what are called negative solutions,
resolving, in a sense opposite to the enunciation, the question in
which they occur.

It follows from this, that we may regard, as but one single ques-
tion, those, the enunciations of which are connected together in
such a manner, that the solutions, which satisfy one of the enun-
ciations, will, by a mere change of sign, satisfy the other also.

62. Since negative quantities resolve in a certain sense the
problems, which give rise to them, it is proper to inquire a little
more particularly into the use of these quantities, and to settle
once for all the manner of performing operations in which they are
concerned.

We have already made use of the rule for the signs, which had
been previously determined for each of the fundamental opera-
tions; but the rules have not been demonstrated with reference
to insulated quantities. In the case of subtraction, for example,
we supposed that there was to be taken from g, the expression
b — ¢, in which the negative quantity ¢ was preceded by a posi-
tive quantity b. Strictly speaking, the reasoning does not de-
pend upon the value of &; it would still apply when b = 0, which
reduces the expression b —c¢ to —c. DBut the theory of nega-
tive quantities being at the same time one of the most important
and most difficult in algebra, it should be established upon a sure
basis. 'To effect this, it is necessary to go back to the origin of
negative quantities.

The greatest subtraction, that can be made from a quantity, is
to take away the quantity itself, and in this case we have zero
for a remainder; thus ¢ —a = 0. But when the quantity to be
subtracted exceeds that from which it is to be taken, we cannot
subtract it entirely ; we can only make a reduction of the quantity
to be subtracted, equal to the quantity from which it was to be
taken. When, for example, it is required to subtract 5 from 3,
or when we have the quantity 3— 5 to take, in the first place, 3
from 5, we decompose 5 into two parts 3 and 2, the successive
subtraction of which will amount to that of 5, and thus, instead
of 3—5, we have the equivalent expression 3 — 3 — 2, which is
reduced to —2. The sign —, which precedes 2, shows what is
necessary to complete the subtraction ; so that, if we had added
2 to the first of the quantities, we should have had 8 42 —5, or
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zero. We express then, with the help of algebraic signs, the idea
that is to be attached to a negative quantity — @, by forming
the equation ¢ — ¢ =0, or by regarding the symbols ¢ —a,
b—b, &c., as equivalent to zero.

This being supposed, it will be understood, thatif we add to
any quantity whatever the symbol b — b, which in reality is only
zero, we do not change the value of this quantity, and that, con-
sequently, the expression @ 4- & — b, is nothing else but a different
manner of writing the quantity e, which is also evident from the
consideration, that 4 & and — & destroy each other.

But having by this change of form introduced -+ & and — b in-
to the same expression with @, we see, that in order to subtract
any one of these quantities, it is sufficient to efface it. If it were
-+ b that we would subtract, we efface it, and there remains ¢ — b,
which accords with the rule laid down in art. 2. ; if on the other
hand it were — b, we efface this quantity, and there would remain
a + b, as might be inferred from art. 20.

With respect to multiplication, it will be observed, that the pro-
duct of a—a by -+°b must be ¢ b— a b, because the multipli-
cand being equal to zero, the product must be zero ; and the first
term being ¢ b, the second must necessarily be — ab to destroy
the first.

We infer from this, that — @, multiplied by 4 b, must give
—ab.

By muliiplying @ by b — b, we have still ab —a b, because the
multiplier being equal to zero, the product will also be equal to
zero; it is therefore necessary that the second term should be
—ab, to destroy the first + a b.

Whenee + e, multiplied by — b, must give —a b.

Lastly, if we multiply — a by b —¥, the first term of the pro-
duct being, according to what has just been proved, —a b, it is
necessary that the second term should be 4- @ 6, as the product
must be nothing when the wultiplier is nothing.

Whence — @, multiplied by — 0, gives + a b.

By collecting these results together we may deduce from them
the same rules as those in art. 31. '

As the sign of the quotient, combined with that of the divisor,
according to the rules proper for multiplication, must produce
the sign of the dividend, we infer from what has just been said,
that the rule for the signs given in art. 42. corresponds with that,

Alg. 10
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which it is necessary to observe in fact, and that consequently,
simple quantities, when they arc insulated, are combined with re-
spect to their signs, in the same manner, as when they make a part
of polynomials.

63. According to these remarks, we may always, when we meet
with negative values, go back to the true enunciation of the ques-
tion resolved, by seeking in what manner these values will satisfy
the equations of the proposed problem ; this will be cenfirmed by
the following example, which relates to numbers of a different kind
from those of the question in art. 56.

64. Two couriers set out to meet each other at the same time
Jfrom two cities, the distance of which is given ; we know how many
males (a) each travels per hour, and we inquire at what point of the
route between the two cities they will meet.

To render the circumstances of the question more evident, I
have subjoined a figure, in which the points A and B represent the
places of departure of the couriers.

A R B

T denote the things given, and those required, in the usual way,
by small letters.

a, the distance in miles of the points of departure 2 and B,

b, the number of miles per hour, which the courier from /1
travels.

¢, the number of miles per hour, which the courier from B
travels.

The letter 2 being placed at the point of meeting of the two
couriers, I shall call # the distance /IR passed over by the first, ¥
the distance BR passed over by the second ; and as

AR 4+ BR = ADB,

1 have the equation,

) x4 y=a.
Considering that the distances x and y are passed over in the same
time, we remark that the first courier, who travels a number b of
miles in an hour, will employ in passing over the distance x, a time

denoted by %

(@) In the original the distance is given in kilometres. It is here
expressed in miles to avoid perplexing the learner.
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Also the second courier, who travels ¢ miles in an hour, will

employ, in passing over the distance y, a time denoted by Z—; we

have then

tT_Y¥
b~ ¢

The equations of the question therefore will be
@ - Yy=a,
rT_Y
b~ ¢

Making the denominator b of the second to disappear, we have

by

r = —=3

c

putting this value in the place of « in the first equation, it be-
comes

and we deduce from it
ac
, /= o
Substituting this value of y in the expression for the value of ,
we obtain

by+cy=uac whence

b ac abec
a):sz_'_c, or :L’:c—(bj‘_—c)(f)l),
or lastly
ab
w:b+c (38).

As the sign — does not enter into the values of x and y, it is
evident that whatever numbers are put for the letters a b ¢, we shall
always find « and y with the sign -, and therefore the question
proposed will be resolved in the precise sense of the enunciation.
Indecd it is readily perceived, that in every case where two per-
sons set off from different points and travel toward each other,
they must necessarily meet.

65. I will now suppose, that the two couriers proceed in the
same direction, and that the one who sets out from /1 is pursuing
the one who sets out from I3, and who is travelling toward the
same point C, placed beyond B, with respect to /1.

A B R C

It is evident that in this case, the courier who starts from the
point /A, cannot come up with the courier who sets off from the
point B, unless he travels faster than this last, and the point of
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coming together, R, cannot be between /4 and B, but must be be-
yond B, with respect to /.

Having the same things given as before, and observing that
when

AR — BR = AB,

we have
r—y=a.
The second equation,
r_Y
b~ ¢

expressing only the equality of the times employed by the cou-
riers in passing over the distances AR and BR, undergoes no

change.
The above equations, being resolved like the former ones, give
by
T = —=,
c
bc—y——y:a, by—cy=uac,
ac
y=5—¢
b ac __ abc
v=z2 b—c¢ c(b—c)’
ab
and lastly @ =

Here the values of @ and y will not be positive, except when &
is taken greater than ¢, that is to say, except the courier starting
from the point 4 be supposed to travel faster than the other.

If, for example, we make °

b =20, ¢ =10,
we have
Ha_ _Na_ 2a
20—10" 10 — 77
10a 10a

y = m = —16— =a H
from which it follows, that the point of their coming together is dis-
tant from the point /4 twice AB.

If we now suppose & smaller than ¢, and take, for example,

b =10, ¢ =20,

T =

we find
. 10a__10a _
T2 T 10T %

__ e _ Wa___,
Y=To—20 — 10— —**
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These values being affected with the sign —, make it evident,
that the question cannot be resolved in the sense in which it is
enunciated ; and indeed it is absurd to suppose that the courier
setting out from the point A, and proceeding only 10 miles in an
hour, should ever be able to overtake the courier setting out from
the point B, and travelling 20 miles per hour, and who is in ad-
vance of the first.

66. Nevertheless, these same values resolve the question in a
certain sense ; for, by substituting them in the equations

r—y=a,
T _y

i)

b ¢

we have by the rule for the signs

—ae+4+2a=aq,

a _  2a

10T 2
equations which are satisfied ; since, by making the reductions, the
first member becomes equal to the second; and if we attend to
the signs of the terms which compose the first, we shall see
how it is necessary to modify the enunciation of the question, in
order to do away the absurdity.

Indeed, it is the distance @ corresponding to x, and passed over
by the first courier, which is in reality subtracted from the distance
2 a, corresponding to y, and passed over by the second courier; it
is then just as if we had changed y into «, and @ into y, and had
supposed that the courier starting from the point B, had run after
the other.

This change in the enunciation produces also a change in the
direction of the routes of the couriers ; they are no longer travel-
ling toward the point C, but in an opposite manner toward the
point C’, as represented in the figure below ;

¢ R A B R C
and their coming together takes place in R’. The result from
this is

BR' — AR’ = AB,
which gives ’

y—r=a;
we have besides constantly

*r_Y
¢
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and we find
b @b _ 10a _
Tec—bT20—10 —/ 7
ac 20 a
V=i s m—i0 — 2%

positive values, which resolve the question in the precise sense in
which it is enunciated.

67. The question we have been considering presents a case, in
which it is in every sense absurd. This occurs when we suppose
the two couriers to travel equally fast. It is evident, that in what-
ever direction we suppose them to move, they can never come to-
gether, since they preserve constantly the interval of their points of
departers.  This absurdity, which no modification in the enuncia-
tion can remcve, is very conspicuous in the equations.

We have now b = ¢, since the couriers, travelling equally fast,
pass over the same space in an hour ; the equation

z__Y
b~ ¢
becomes -Z— = -%,
and gives z=y.
Thus the equation T—y=a
reduces itself to t—zx=aor 0=a,

a result sufficiently absurd, since it supposes a quantity «, the mag-
nitude of which is given, to be nothing.

68. This absurdity shows itself in a manner very singular in the
values of the unknown quantities

p= 2 b _ ac
“b— T b—¢’
their denominator becoming 0 when & = ¢, we have
ab ac
€xr = T’ y = T.

We do not easily perceive what may be the quotient of a di-
vision when the divisor is zero ; we see merely, thatif we consider
b as nearly equal to ¢, the values of x and y become very great.
To be convinced of this, we need only take

b = 6 miles, ¢ = 5,8 miles;
6a
we then have T=gg = 30 q,
58a

Yy ._—:0’2 = 29a.
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If further we take b==6 c=50.
we have
= ?)j = 60a,
=4
y= 3’? a = 59 a.
If moreover we make
b==6, ¢ = 5,99,
it becomes
6a
T = —0’—01— = GOO a,
y:%’ﬂi’a: 599 a ;

and it is manifest, that as the divisor diminishes in proportion to the
smallness of the assumed difference of the numbers b and ¢, we
obtain values more and more increased in magnitude.

But as a quantity, however minute, can never be taken for zero,
it follows, that however small we make the difference of the num-
bers represented by the letters b and ¢, and however great may be
the consequent values of z and y, we never attain to those which
answer to the case where b =c.

Since these last canuot be represented by any number, however
great we suppose it, they are said to be snfinite ; and every ex-

pression of the form -, the denominator of which is zero, is re-

garded as the symbol of nfinity.

This example shows that mathematical infinity is a negative
idea, since we at length get it only by the impossibility of assign-
ing a quantity that can resolve the question.

We may ask here, how the values

ab ac
T=1> =
satisfy the equations proposed ; for it is an essential character-
istic of algebra, that the symbols of the values of unknown quan-
tities, whatever they may be, being subjected to the operations
indicated upon these quantities, shall satisfy the equations of the
problem.

By substituting them in the equations

T—Yy=a,
Y
50
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which answer to the case where = ¢, we have by the first,

ab ab __ a
0 o™
b—
or 2 Oﬁ:a, or ab—ab=aX0,
or lastly, 0=0, since aX0=0.
The second equation gives, under the same condition,

ab ab
OXb0x b’
the two members of each equation becoming equal, the equations
are satisfied.
It remains still to explain how the notion indicated by the ex-

pression ao_b’ removes the absurdity of the result found in art. 67.

For this purpose, let the two members of the equation

x—y =a,
be divided by z, which gives
42
1 z gz’
and as the equation
T _Y
b7 b
gives @ = y, the first becomes
1—1=2 o 0=2.
z T

. . . a .
The error here consists in the quantity ) by which the second

member exceeds the first; but this error becomes smaller and
smaller, in proportion to the assumed magnitude of x. Itis then
with reason, that algebra gives for @ an expression, which cannot
be represented by any number, however great, but which, as it
proceeds in the order of numbers becoming greater and greater,
points out in what manner we may reduce more and more the er-
ror of the supposition.

69. If the couriers travelling equally fast, and in the same di-
rection, had set out from the same point, their coming together
could not be said to take place at any particular point, since
they would be together through the whole extent of their route.
It may be worth while to see how this circumstance is represented
by the values, which the unknown quantities # and y assume in
this case. -
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B
A ' C
The points 2 and B being coincident, we have on this suppo-
sition @ = 0, and constantly b = c; it follows then, that
06 0 Oc 0
o YToTo
In order to interpret these values, that indicate a division, in
which the dividend and divisor are each nothing, I go back to the
equations of the question. The first becoming
x—y =0, gves x=1y;
and substituting this value in the second equation, which is

% = %, it becomes % = %

The last equation having its two members tdentical, that is to
say, composed of the same terms with the same sign, is verified,
whatever value is assigned to y, and this unknown quantity can

never be determined. Besides, it is evident that the equation

T =

7—; = % becomes » = y,
and consequently can express nothing more than the first.* The
only result, both from the one and from the other, is, that the two
couriers are always together, since the distances @ and y from the
point /A are equal ; their value in other respects remains indeter-
minate. The expression ¢ then, is here a symbol of an inde-
terminate quantity. I say here, for there are cases where it is
not; but the expression has not then the same origin as the pre-
ceding. R

70. To give an example, let there be

b(a—0b) "

This quantity becomes ¢ in its present form, when a == &; but if
we reduce it first to its most simple expression, by suppress-
ing the factor ¢ — b, common to the numerator and denominator,
we find

* For the sake of conciseness, analysts apply to the same equations
the epithet, identical.

y_Y
b b
and when two equations express only the same thing, we say that
these equations also are identical.

Alg. 11

is an identical equation, 5—3 2 =5—3 z is another,
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a(a 4 b)
==,
which gives 2 @, when a = b.

It is not the same with the values of « and y, found in the pre-
ceding article, for they are not susceptible of being reduced to a
more simple expression.

It follows, from what I have just said, that when we meet
with an expression which becomes ¢, it is proper, before pro-
nouncing upon its value, to see if the numerator and denominator
have not a common factor, which becoming nothing, renders the
two terms at the same time equal to zero, and which being sup-
pressed, the true value of the proposed expression is obtained.
There are, notwithstanding, some cases which elude this method,
but the limits of this work will only allow me to note the analyti-
cal fact. It belongs properly to the differential calculus, to give
the general processes for finding the true value of quantities, which
become .

71. It is very evident, from what has been said, that algebraic
solutions either answer perfectly to the conditions of a problem, when
it 1s possible, or they indicate a modification to be made in the enun-
ciation, when the things gwen wmply contradictions that cannot be
reconciled ; or lastly, they make known an absolute impossibility,
when there is no method of resolving with the same things given, a
question analogous in a particular sense to the one proposed.

72. It may be remarked, that in the different solutions of the
preceding question, the changing of the signs of the unknown
quantities # and ¥, corresponds to a changz in the direction of the
journeys represented by the unknown quantities. When the un-
known quantity y was counted from B towards J, it had in the
equation

r+y=a,
the sign -, and it takes the sign — for the second case, when the
motion is in the opposite direction from B towards C, art. 65.,
since we had for the first equation

T—y=a.
By changing the sign in the second equation,

Ty

b ¢

we have
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a result which differs from that given in the article cited ; but it
should be observed, that the journey y, being made up of multi-
ples of the space ¢ passed over in an hour by the courier from B,
and this space having the same direction as the space y, ought to
be supposed to have the same sign, and consequently to take the
sign —, when — is applied to y ; we have accordingly,

z —_1 z
5 :—f’ o p= %’

A simple change of sign then is sufficient to comprehend the
second case of the question in the first, and it is thus that algebra
gives at the same time the solution of several analogous questions.

We have a striking example of this in the problem of art. 15.
It is here supposed that the father owed the son asum d; if
we would resolve the question on the contrary hypothesis, that
is, by supposing that the son owed the father the sum d, it would
be sufficient to change the sign of d, in the value of x, and we
have

be—d

= a+—b—.
If we suppose neither to owe the other any thing, we must make
d = 0, and then the equation would be

be

=T
Nothing can be easier than to verify the two solutions, by putting
anew the problem into an equation for each of the cases, which we
have enunciated.

73. It was only to preserve an analogy between the problems
56 and 64, that I have employed two unknown quantities in the
second. Each may be resolved with only one unknown quanti-
ty ; for when we say that the laborer received 74 francs for 12
days’ work performed by himself and 7 days’ work by his wife
and son, it follows, that if we call y the daily wages of the woman
and son, and take 7y from 74 francs, there will remain 74 — 7y
for the 12 days’ labor of the manj; from which we infer that he
Ty

12
By a similar calculation for the 8 days’ service, we find that he
50_8{)—1‘1 per day.

Putting the two quantities equal to each other, we form the
equation

earned per day.

he earned
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4—Ty _50—5y
2 — 8 -

Also in the question of art. 64.,

A R B
if x represent the course AR of the courier from A, BR = a —a
would be that of the courier who set off from B towards /. These
two distances being passed over in the same time by the couriers,
whose rate of travelling per hour in*miles is denoted by numbers
b and c respectively, we have

Z_a—"fb
P e
whence
ce=ab—>bua,
= ab
T b4’

The difference between the solutions, which I have now given,
and those of articles 56. and 64., consists merely in this, that we
have formed and resolved the first equation by the assistance of
ordinary language, without ewploying algebraic characters, and it
is manifest, that the further we carry this, the less will remain to be
effected by the other.

74. We sometimes add to the problem of art. 64. a circum-
stance, which does not render it more difficult.

A R C B

We suppose that the courier, who starts from B, sets off a number
d of hours before the other, who goes from A.

It is evident, that this amounts only to a change of the point of
departure of the first; for if he travelled a number ¢ of miles per
hour, he would pass over the space BC = ¢d in d hours, and
would be at the point C, when the other courier set off from /4
so that the interval of the points of departure would be

AC=AB — BC = a—cd.
By writing then @ — ¢ d in the place of « in the equation of the

preceding article, we have
T _a—cd—zx
b c ’
p o tb=bed
T b+
If the couriers proceeded in the same direction, the interval of
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A B - C R
the points of departure would be
AC=AB 4 BC =a-+cd;

and the distance passed over by the courier from the point A
would be AR, while that passed over by the other courier would
be CR=AR—AC;
we have then

z z—a—cd

3 ¢ ’ -

whence
_abtbed
=

75. Enunciated in this manner, the problem presents a case, in
which the interpretation of the'negative value found for x is attend-
ed with some difficulty ; it is when the couriers being supposed to
proceed in opposite directions, we give to the number d a value
such, that the space B C represented by cd, becomes greater than
a, which represents ADB.

....... e e e

C R A B
Now the courier from the point I3 arrives at C on the other side
of 4 at the moment when the courier from 4 sets off towards B;
there is then an absurdity in supposing that the two couriers can
thus come together.
If we should take, for example,
a = 400 b = 12"5, ¢ = 8mk = 60h,

there would result from it ¢ d = 480mis. ; thus the point C would
be 80™"- on the other side of ., with respect to the point B bat
we find,

_400-12—60-8-12 400-3—60-2-12
= S 12 = 2+ 3

1200 — 1440 24
= F—— = — = 48.

Thus the coming together of the couriers takes place in a point
R, 48™5s- on the other side of the point /2, but between /1 and C;
although it seems that the courier from B, being supposed to
continue his journey beyond the point C, can be overtaken by the
other courier only after he has passed this point.

To understand the question resolved irn this sense, we may
substitute in the place of x the negative member — m, and the
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equation becomes
m_a—cd-+4m
o c ’
or by changing the signs in the two members,

m cd—a—m

[ c
We see that the distance passed over by the courier from the

...........

C R A B

point B, is ¢d — a — m, or what remains of BC after /B and
AR are subtracted, that is CR, and that AC —=cd—a. This
is just what would take place if the second courier had started
immediately from the point C, where he is, at the departure of
the first; but as they travel in opposite directions, they must
necessarily meet between  and C. Thus, this case is similar
to the first of those of art. '74., where it is sufficient to change
a—cdinto cd —a, in order to obtain the value, which m has
according to the above equation.*

76. The problem of art. 56., taken in its most enlarged sense,
may be enunciated as follows ;

A laborer having passed a number a of days in a family, and
having with kim his wife and son during a number b of days, re-
cetved a sum c ; he lived afterward in the same family a number d
of days ; he had with him this time his wife and son, during a
number e of days, and he received a sum {; we inquire what he
earned per day, and what was allowed per day to his wife and son.

Let @ represent constantly the daily wages of the laborer,
and y that of bis wife and son; for the number a of days, he has
ax, and for the number b of days, his wife and son have by, so
that,

ar+by=c;
for the number d of days, he has d, and for the number e of
days, his wife and son have ey, thus,
detey=f
These are the general equations of the question.
We deduce from the first
_c—by,
=—;
multiplying this value by d, in order to substitute it in the place of

* See note at the end of Elements of Algebra.
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x in the second equation, we have
cd—bdy
d i — a___;/,

and consequently,
d—bd
i——a—l +ey=f

By making the denominator to disappear, we obtain
cd—bdytaey=af,

whence aey—bdy=af—cd,
__af—cd
—ac—bd

Having the value of y, if we substitute it instead of y in the ex-
pression for , this last will be known,

—cd

c__z,ZL_ZTi

r = ac .
a

To simplify this expression, we should, in the first place, perform

the multiplication indicated upon the quantities
af—cd

I), : and -a—c—:—[;—d‘, (51)
which gives
a bI— bed
¢— Tae—bd
&= H
«

and then reduce ¢ to a fraction having the same denominator as the
fraction which accompanies it, and perform the subtraction of this

fraction (53) ; and it becomes
ace—bcd—abf+bcd

ae—bd
Xr = y
a
or by being reduced
ace—abf
.x:::_._____ae_b d.*
a

* There might be some doubt as to the meaning of this expres-
sion ; but it is obviated by attending to the bar denoting division,
which is placed in the middle of the line. Thus, in the expression

A - . .
T=p A represents the dividend, whether integral or fractional, and
B the divisor, which may also be a whole number or a fraction. So also
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Dividing by e (51) we have
—gece—abf
T a*e—abd
Suppressing the factor @, common to the numerator and denomina-
tor (38), we find

_ce—bf
=i
The values
w_ce——bf _af—cd

“de—bd’ YT ac—ba
are applied in the same maonner as those, which we before found
for literal equations, with only one unknown quantity ; we sub-
stitute in the place of the letters, the particular numbers in the ex-
ample selected.

We shall obtain the results in art. 56., by making

a=12, b="1, c= "4,

d= 8, e=5, f=250,
and those of art. 58., by making

a=12, b="1, ¢ == 406,

d= 8, e=>5, f=30.

77. The values of @ and y are adapted not only to the pro-
posed question ; they extend also to all those, which lead to two
equations of the first degree with two unknown quantities, since it
is evident, that these equations are necessarily comprehended in
the formulas,

= Qls

the expression 2 = = signifies, that z is equal to the quotient of the

%indicates for z the
C

fraction % divided by B, and the expression z =

quotient arising from A divided by the fraction Ig,; and lastly, we de-
A

note by the expression z = =, the quotient resulting from the divis-

C
Br
D
ion of the fra.ction%l, by the fraction I—Ii

It will be perceived by these remarks, that it is necessary to place
the bars according to the result, which we propose to express.
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axt+by=c,

detey=f
provided the letters a, b, d, ¢, denote the whole of the given quan-
tities, by which the unknown quantities @ and y are respectively
multiplied, and the letters ¢ and f; the whole of the known terms,
transposed to the second member. )
Of the resolution of any given number of Equations of the First

Degree, containing an equal number of Unknown Quantities.

78. WHEN a question has as many distinct conditions, as it contains
unknown quantities, each of these conditions furnishes an equation,
in which it often happens, that the unknown quantities are involved
with others, as we have seen already in the problems with two
unknown quantitics; but if these unknown quantities are only
of the first degree, according to the method adopted in the
preceding articles, we take in one of the equations the value of
one of the unknown quantities, as if all the rest were known,
and substitute this value-in all the other equations, which will then
contain only the other unknown quantities.

This operation, by which we exterminate one of the unknown
quantities, is called elimination. In this way, if we have three
equations with three unknown quantities, we deduce from them
two equations with only two unknown quantities, which are to be
treated as above; and having obtained the values of the two last
unknown quantities, we substitute them in the expression for the
value of the first unknown guantity.

If we have four equations with four unknown quantities, we
deduce from them, in the first place, three equations with three
unknown quantities, which are to be treated in the manner just
described ; having found the value of the three unknown quanti-
ties, we substitute them in the expression for the value of the first,
and so on.

See an example of a question, which contains three unknown
quantities and three equations.

79. A person buys scparately three loads of grain ; the first,
which contained 30 measures of rye, 20 of barley, and 10 of wheat,
cost 230 francs ;

The second, which contained 15 measures of rye, 6 of barley,
and 12 of wheat, cost 138 francs ;

Alg. 12
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The third, which contained 10 measures of rye, 5 of barley, and
4 of wheat, cost 75 francs ;

It is asked, what the rye, barley and wheat cost, each per measure?
Let « be the price of a measure of rye,

Y, that of a measure of barley,
2, that of a measure of wheat.
To {ulfil the first condition, we observe, that
30 measures of rye are worth 30 «,
20 measures of barley are worth 20 y,
10 measures of wheat are worth 10z ;
and as the whole must make 230 francs, we have the equation
30 420y -+ 10 z = 230.
For the second condition, we have
15 measures of rye, worth 15 a,
6 barley 6y,
12 wheat 12 z,
and consequently,
15246y 4 122 =138.
For the third condition, we have
10 measures of rye worth 10 x,
5 barley 5y,
4 wheat 4z,
and consequently,
100+ 5y + 42 = 175.
The proposed question then will be brought into three equations ;
3802 4 20y + 10z = 230,
152+ 6y 122 =138,
100+ 5y+ 4z= 75.

Before proceeding to the resolution, I examine the equations,
to see if it is not possible to simplify them by dividing the two
members of some one of them by the same number (12), and I
find that the two members of the first may be divided by 10, and
those of the second by 3. Having performed these divisions, I
have only to occupy myself with the equations

S3e+42y+ z2=23,
54 2y 4z =46,
10x45y+ 4z ="15.

As T can select any one of the unknown quantities in order to
deduce its value, I take that of z in the first equation, because this
unknown quantity having no coeflicient, its value will be entire or
without a divisor, as follows ;
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z2=23—32x— 2.
This value being substituted for z in the second and third equa-
tions, they become
5o+ 2y+ 92 —12¢—8y = 46,
10045y 4+ 92— 122 —8y ="175;
and reducing the first member of each, we find
92 — 72— 6 y = 46,
92 —22—3y="15.
To proceed with these equations, which contain only two un-
known quantities, I take in the first the value of the unknown
quantity ¥, and I obtain

92 — 46 —7x 46 —7
= ———6————, or Y= -— 6
and by substituting this value in the second equation, it becomes
92 —22—3 X 6—02 ="15.

The denominator, 6, may be made to disappear by the usual
method, but observing that the denominator is divisible by 3, I can
simplify the fraction by multiplying it by 3, agreeably to article 54.
of Arithmetic. 1 have then

92—2 20— @—;U = 175.
The denominator 2 being made to disappear, it becomes
184 — 42 —46 4+ 72 =150;
the first member being reduced, gives
138 4 32 = 150,
whence
lo()— 138 12
3 T
Substituting this value in the expression for that of y, I find
_ 46—7x4_46—28 _ 18
- 6 - 6 - ¢’
and by substituting these values in the expression for that of z, we
obtain

=23 —3 X4 —2X3=23—12—06,0r 2=25.

It appears then, that the price of the rye per measure was 4 fr.,

that of the barley 3,
that of the wheat 5.

This example, while it illustrates the method given in the pre-
ceding article, ought to be attended to, on account of the abbrevi-
ations of calculation, which are performed in it.

or »x=4.

y=3;
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80. I proceed now to resolve the following problem.

A man who undertook to transport some porcelain vases of three
different sizes, contracted that he would pay as much for each wvessel
that he broke, as he recetved for those which he delivered safe.

He had committed to him two small vases, four of a middle size,
and nine large ones ; he broke the middle sized ones, delivered all
the others safe, and recetved the sum of 28 francs.

There were afterwards committed to him seven small vases, three
of the middle size and five large ones; he rendered this time the
small and the middle sized ones, but broke the five large ones, and
he received only three francs.

Lastly, he took charge of nine small vases, ten middle sized ones,
and eleven large ones ; all these last he broke, and received in con-
sequence only 4 francs.

It is asked what was paid him for carrying a vase of each size?

Let 2 be the sum paid for carrying a small vase,

¥, that for carrying a middle sized one,
2, that for carrying a large one.

It is evident, that each sum which the porter received, is the
difference between what was due to him for the vessels delivered
safe, and what he had to pay for those which were broken ; ac-
cordingly, the three conditions of the problem furnish respectively
the following equations ;

22— 4y+4 9z=28,
Te4+ 3y— bSz= 3,
9o4 10y — 1l z= 4.
The first of these equations gives
W44y —92
z="—g—;
and by substituting this value, the second and third equations
become

196 428y — 63
T2 5y —6z=3,

BRIy —PlE L 1oy —112=4.
Making the denominators to disappear, we have
196 4-28y— 63z + 6y—102z =6,
252 436y —8lz 420y —222=8;
reducing the first member of each, we obtain
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196 4 34y— 73z =6,
252 456 y— 1032 =8;
taking the value of y in the first of these equations, we find

732 — 190
y="381
By means of this value, the second equation becomes
73z— 190
252 + 56 X ——— — 1032 =8;

being cleared of the denominator 34, it is changed into
34 X 252 4 56 X 732— 56 X 190—34 X 103z =34 X 8§,
or into
8568 4- 4088 2 — 10640 — 3502 z = 272.
The reduction of the first member of this result, gives
586 z — 2072 = 272,
whence we deduce
.Y
T 586°
By going back with the value of z to that of y, we have
73 X 4—190 292 190 _ 102

or z=4.

31 3 T3 =35
and with these two values, we find
28-]—4)(23—9><4 28—{—12—36 3, o 22,
The prices then were 2 fr. for carrying a small vase,
3 one of a middle size,
4 a large one.

This example is sufficient to show how to proceed in all simi-
lar cases.

81. It sometimes happens, that all the unknown quantities do
not enter at the same time into all the equations; the method,
however, is not changed by this circumstance ; it is sufficient,
carefully to examine the connexion of the unknown quantities, in
order to pass from one to the others.

Let there be, for example, the four equations,

Ju—2y= 2,

2z 43y =39,

S5x—"7T2z=11,

4y 4 3z=41,
containing the unknown quantities, u, «, ¥, and 2.
With a little attention we see, that by taking the value of

/
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in the second equation, and substituting it in the third, the result
containing only y and =z, will, by being combined with the fourth
equation, give the values of these two quantities ; and having the
value of y, we obtain those of » and , by means of the first and
second equations. The following is the process ;

r= ————39_2—%
5 X§9_;_§_z_/__7z____“’
or 196 — 15y — 14 z = 22,
or 15y+4 142 =173 (57).

The two equations
15y 4 14z = 173,
4y4 3z= 4],
being resolved, give
y=2>5, z2="17T;
and by means of these values, we have
 39—8x5 39—15 24

r= D) = 5 =gy Or r =12,
_ 242y _2410_ 12 _
U=—g—=—g— =73, O u=4.

The numbers sought then are
4,12, 5, and 7.

82. The method now explained is applicable to literal equa-
tions, as well as to numerical ones; but the multitude of letters,
which it is necessary to employ to represent generally the things
given, when the number of equations and unknown quantities
exceeds two, has led algebraists to seek for a more simple man-
ner of expressing them. 1 shall treat of this in the following
article ; but in order to furnish the reader with the means of
exercising himself in putting a problem into an equation, and
resolving it, I have subjoined a number of questions, and have
placed at the end of each the answer that is required.

(1.) 4 father, being asked the age of his son, said, if from double
the age that he is of now, you subtract triple of what he was six
years ago, you have his present age.

Answer.  The child was 9 years old.

(2.) Diophantus, the author of the most ancient book on Algebra,
that has come down to us, passed a sixth part of his life in infancy, o
a twelfth part of it in youth ; afterward he was married and passed
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tn this state a seventh part, and five years more, when he had a son,
whom he survived four years, and who attained only to half the age
of his futher, what was the age of Diophantus when he died 2

Answer, 84 years.

(3.) A merchant drew, every year, upon the stock he had in
trade, the sum of 1000 francs for the expense of his family ; still
his property increased every year, by a third part of what remained
after this deduction, and at the end of three years it was doubled ;
how much kad he at the beginning of the first year ?

Answer, 14800 francs.

(4.) A merchant has two kinds of tea, the first at 14 francs a
pound, the second at 18 francs ; how much ought ke to take of each to
make up a chest of 100 pounds, which should be worth 1680 francs ?

Answer, 30 pounds of the first and 70 of the second.

(6.) A person filled, in 12 minutes, a vessel containing 39 gal-
lons, with water, by means of two fountains, which were made to
run tn succession, and one discharged 4 gallons per minute and the
other 3, how long did each fountain run 2

Answer, the first 3-minutes, and the second 9.

(6.) At noon the hour and minute hands of a watch are together,
at what point of the dial will they next be in conjunction ?

Answer, at 1 hour b minutes and ;.

Obs. This problem refers itself to that of art. 65.

(7.) A man, meeting some beggars, wishes to give them 25 cents
each, but finds upon counting his money, that he wants 10 cents in
order to do tt; he then gives them only 20 cents each, and has 25 cents
left ; how much money had he, and what was the number of beg-
gars?

Answer, he had $1,65, and the number of the beggars was 7.

(8.) Three brothers purchased an estate for 50000 francs, and
the first wanted, in order to complete the whole payment, half of the
property of the second ; the second would have paid the entire sum
with the help of a third of what the first owned, and the third requir-
ed, to make the same payment, w addition to what he had, a fourth
part of what the first possessed ; what was the amount of eack®ne’s
property 2

Answer, the first had 30000 francs, the second 40000, and the
third 42500.

(9.) Three players after a game count their money, one had lost,
the other two had gained each as much as he had brought to the play ;
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after the second game, one of the players, who had gained before, lost
and the two others gained each a sum equal to what he had at the
beginning of this second game ; at the third game, the player, who
had gained 61l now, lost with each of the others a sum equal to that,
which each of them possessed at the beginning of this last game ;
they then separated, each having 120 francs ; how much had they
each, when they commenced playing 2
Answer, he who lost at the first game, had 195 francs,
he who lost at the second 105,
he who lost at the third 60.

General formulas for the resolution of Equations of the First Degree.

83. To obviate the inconvenience referred to in the beginning
of the last article, we shall represent all the coefficients of the
same unknown quantity by the same letter, but distinguish them by
one or more accents, according to the number of equations.

General equations with two unknown quantities are written
thus ;

ax +by =,
detby=c.
The coeflicients of the unknown quantity « are both represented
by @, those of y by b; but from the accent, which is placed over
the letters in the second equation, it may be seen, that they are
not considered as having the same value, as the corresponding ones
in the first. Thus ¢’ is a quantity different from @, b’ a quantity
different from .
If there are three equations, they are expressed thus ;
a v4+b y4c z=d,
o 2+ y+d z2=4d,
a! x + b//y + ¢’z =d".
All the coefficients of the unknown quantity « are designated by
the letter a, those of y by b, those of z by ¢; but the several let-
ters are distinguished by different accents, which show, that they
den%e different quantities. Thus a, o’ a”/, are three different
quantities. 'The same may be said of b, ¥/, b, &e.
Following this method, if we have four unknown quantities, and
four equations, we may write them thus ;
a z+b y+c z4+d u=e,
o 24V y+¢ z4d u=e,
" w40y 2 d u=e,

a x + b/// y + 'z + dl/l uw = e,
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84. To avoid fractions, and simplify the calculation, we may
vary the process of elimination in the following manner.

Let there be the equations

axt+by=c
da+by=c,
it is evident, that if one of the unknown quantities, x, for exam-
ple, has the same coeflicient in the two equations, we have only to
subtract one of these equations from the other, in order to make
this unknown quantity disappear. This may be seen at once in the
equations
102 + 11y = 27,
10e 4+ 9y =15,
which give
11y—9y =27 —15,0r 2y =12, or y = 6.
It is evident, that the coefficients of @ may be immediately made
equal in the equations
ax+4by=c,
adx4by=r¢c,
by multiplying the two members of the first by o/, the coefficient
of zin the second, and the two members of the second by a, the
coefficient of @ in the first ; we thus obtain,
adx4a'by=davc,
adctaby=ac.
Then subtracting the first of these from the second, the unknown
quantity « disappears ; and we have
(ab —a'b)y=acd —a'c,
an equation, which contains only the unknown quantity y ; from
this we may deduce,
ac —ca
Yy =r—ba"

The method we have just employed, may always be applied to
equations of the first degree, to exterminate any one of the un-
known quantities.

By exterminating, in the same manner, the unknown quantity y,
we may find the value of .

If we apply this process to three equations, containing , y, and
z, we may first exterminate « from the first and second, then from
the first and third ; we thus obtain two equations, which contain
only y and z, from which we may exterminate y.

When this calculation is performed, the equation containing z,

Alg. 13
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to which we arrive, will have a factor common to all its terms,
and consequently will not be the most simple, which may be
obtained. )

85. Bézout has given a very simple method for exterminating
at once all the unknown quantities except one, and for reducing
the question immediately to equations, which contain one un-
known quantity less than the equations proposed. Although
this process is necessary, only when equations with three un-
known quantities are employed, we shall, in order to give a com-
plete view of the subject, begin by applying it to those, which con-
tain only two.

Let there be the equations

ax+by=c

de+by=c;
multiplying the first by any indeterminate quantity m, we have

amx4+bmy=mc;

subtracting from this result the equation

de++Vy=c,
there remains

ame—azt+bmy—by=cm—c,

or (eam—da) x4+ (bm—b)y=cm—c.

Since m is an indeterminate quantity, we may suppose it to be
such, that bm =¥’. In this case, the term multiplied by y disap-
pears, and we have

cm—c
= am—a’
but since b m = ¥, it follows that,
/

m=qi;
therefore
cb!
_ I3 __f’_ cb/—bc
r= ﬂl—-a’—— ab —ba"

b
If, instead of supposing bm = b’, we make am = «/, the term,
which contains @, will vanish, and we shall have

_em—c
Y =tm—v"
The value of m will not be the same as before ; for we shall have
al

m=—
a’
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and by substituting this in the expression for y, we find
ca' —ac
Y=oy
If we change the signs of the numerator and denominator of this
value of y, the denominator will become the same, as that in the
expression for x, since we shall have

ac —ca
Y=o
86. Next let there be the three equations
e v+b y+c z=d,
o x4+ y4o z2=4d,
a’ 13+[)” y+C” Z:d”;
we shall be led, by an obvious analogy, to multiply the first of
these equations by m, and the second by n, m and n being inde-
terminate quantities, to add together the results, and from the
sum to subtract the third ; by this means, all the equations will be
employed at the same time, and the two new quantities m and =,
which we may dispose of as we please, will admit of any deter-
minate value, which may be necessary to make both the unknown
quantities disappear in the result. Having proceeded in this man-
ner, and united the terms by which the same unknown quantity is
multiplied, we shall have
(am+a'n—a’)z4 (bm 4+ n—"0")y+ (cm+c n—c")z
=dm+4d n—d".

If we would make the unknown quantities « and y disappear,

we must take the equations
am-a'n=a",
bm 4 b'n=10b",
and then we obtain
_dmtdn-—d
T em+4cn—c" "

From the two equations, in which m and n are the unknown
quantities, it is easy to deduce the value of these quantities, by
means of the results obtained in the preceding article ; for it is
only necessary to change in these results « into m, y into n, and to
write instead of the letters

/ 4
Zj’ Ibai, zj, } the letters { Z: g,” g,,”

which gives
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a'b — b a
e b—ba’
ab’'—ba

b =ba
Substituting these values in the expression for z, and reducing all
the terms to the same denominator, we have,T
_d a'—ad b )J-d (ab'—ba')—d' (aV —bda)
T ad —ad by fd(ab—ba’)y—d (ab—ba')

If we had made the terms containing x and z to disappear, we
should have had y; the letters m and n would have depended
upon the equations )

am 4o n=ua", cm ¢ n=c",
and proceeding as before, we should have found
_d(cda'—d ")4-d (ac'—ca')—d'(ac’—ca')
Y=o (dd —=ad )+ b (ac’ —ca'y—b' (ac —cd)
Lastly, by assuming the equations
bm 4 b'n=1"5", cmtc¢n=c",
we make the terms multiplied by y and =z to disappear; and we
have
_ d(c/ b — b c//) + d (b ¢! —¢ bll)_dl/ (b c—c b/)

r= a(c b’ —b ) da (bc —cb')y—a' (bc'—cb')

These values being developed in such a manner, as to make the
terms alternately positive and negative, if we change, at the same
time, the signs of the numerator and denominator, in the first and
third, we shall give them the following forms ;

_abd'—ad ¥/ 4dab'—ba'd' fbd a’—db o
2= —ad b'4cab'—ba'c' +bc'a'—cba”
ad/ c”—ac’d” —{—Cd’ d//__da/ C”+d5/ a“—-—-cd’ a//

Y=o —acb" +ca b —ba'c’ b a'—cb o'’

_dbc'—dcdb'4-cdb'—bd ' b d' —cb d’
- ab’c”—uc’b”+ca’b"—ba’c” + be¢ al — cb/a//‘
87. Let there be the four equations

a x4+b y+c z+d u=e
o 46 y4¢ z4d u=e¢,
a// .§C+b” y+c// z+d// u:e”,
a’ x + b y + "z + A" u = e 5

2

2

a' b —b"a ab’ —ba ab —ba

t _—a b —b a’+d/ab’ —ba —d//ab’—ba’
z-—-a//b/___b//i/ ,al)”—-ba” o ab’—ba"
& W —b a" ab —bad ~ ~ abl—bd
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if we multiply the first by m, the second by =, the third by p,
and from the sum of their products subtract the fourth, we shall
have :

(am+an+a"p—a)e+(bm4+0n4+b"p—0")y
F(mten+t+c’'p—c”)z+dnt+dnd-d’ p—d’)u

=em 4 en Je’p—e.
In order to obtain %, we make
am 4 a'n "l—d//}] =a",
bm b n b p=0",
cm—4-cn ¢’ p=c
we then have
1 Fen+e'p—e
T dmtdntd'p—d'

The preceding equations, which must give m, n, and p, may be
resolved by means of the formulas found for the case of three
unknown quantities. This method will appear very simple and con-
venient ; but the nature of the results obtained above will furnish
us with a rule for finding them without any calculation.

88. To begin with the most simple case, we take an equation
with one unknown quantity, « = & ; from this we find

r = —
a,

in which the numerator is the whole known term b, and the de-
nominator the coefficient a, of the unknown quantity.

From the two equations

azx+by=c, dar+4by=c,
we have already deduced
cb—bc ac —ca

T ab=ba’ Y =avr=pa"
The denominator in this case also is composed of the letters a, o,
b, ¥, by which the unknown quantities are multiplied. We first
write @ by the side of b, which gives ab; we then change the
order of @ and b, and obtain ba ; prefixing to this the sign —
we have ab— ba; lastly, we place an accent over the last
letter in each term, and the expression becomes a ¥’ —b o’ for
the denominator.

From this expression we may find the numerator. To obtain
that for , we have only to change each a into ¢, and each b into ¢
for that of y, putting an accent over the last letter as before ; in
this way we find ¢ — b ¢/ for the one, and a ¢’ —c ' for the
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other. The numerator may, therefore, be found from the denomi-
nator, as well in cases where there are two unknown quantities, as
when there is only one, by changing the coefficient of the unknown
quantity sought, into the known term or second member, and retain-
ing the accents, which belonged to the coefficients.

The same rule may be applied to equations with three un-
known quantities, as we shall see by merely inspecting the
values, which result fromn these equations. With respect to the
denominator, it is necessary further to illustrate thc method by
which it is formed. Now, since in the case of two unknown
quantities, the denominator presents all the possible transpositions
of the letters ¢ and b, by which the unknown quantities are mul-
tiplied, it may be supposed, that when there are three unknown
quantities, their denominator will contain all the arrangements of
the three letters @, b, ¢. These arrangements may be formed in
the following manner.

We first make the transpositions @ b — b a with the two letters a
and b, then, after the first term a b, write the third letter ¢, which
gives a b ¢ ; making this letter pass through all the places, observing
each time to change the sign, and not to derange the order in
which a and b respectively stand, we obtain

abc—ach-+cab.
Proceeding in the same manner with respect to the second term
—b a, we find
—bac+bca—cba;
connecting these products with the preceding, and placing over the
second letter one accent, and over the third two, we have
ab ' —acdb’+ca'l’ —ba' " +bca’—clb a”,
a result, which agrees with that presented by the formulas, obtain-
ed above.

From this it is obvious, that, in order to form a denominator
in the case of four unknown quantities, it is necessary to introduce
the letter d into each of the six products,

abc—ach4cab—bactbeca—cbha,
and to make it occupy successively all the places. The term a b c,
for example, will give the four following ;
abcd—abdc+ adbc—dabe.

If we observe the same method in regard to the five other pro-

ducts, the whole result will be twenty-four terms, in each of which,
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the second letter will have one accent, the third two, and the
fourth three. The numerators of the unknown quantities u, 2, y,
and x, are found by the rule already given.*

89. We may employ these formulas for the resolution of nu~
merical equations. In doing this, we must compare the terms of
the equations proposed with the corresponding terms of the gen-
eral equations, given in the preceding articles.

To resolve, for example, the three equations

Ta+5y42z2= 79,
8z 4+ Ty+9z=122,
z44y+5z= 55,
it is necessary to compare the terms with those of the equations
given in art 86. We have then
¢ =7,0 =5,¢c =2,d 79,
o =8V =1,¢ =9,d =122,
o =1,V = 4,¢" = 5,d' = 55.
Substituting these values in the general expressions for the un-
known quantities @, y, and 2, and going through the operations,
which are indicated, we find
r =4, y =9, z = 3.

It is important to remark, that the same expressions may be
employed, even when the proposed equations are not, in all their
terms, affected with the sign |, as the general equations, from
which these expressions are deduced, appear to require. If we
have, for example,

{1l

3za—9y+48z= 41,
—bax 4+ 4y 4 22z =—20,
Me—7y—6z= 37,

in comparing the terms of these equations with the corresponding
ones in the general equations, we must attend to the signs, and the
result will be

a =4+ 3,0 =—9,¢ =+48,d = 4 41,
@ =— B =4 4¢ =42 d =—20,
W = 1LY = — T, ¢ = —6,d" = } 37.

We are then to determine by the rules given in art. 31., the sign,

* M. Laplace, in the second part of the Mémoires de I’ Académie
des Sciences for 1772, p. 294, has demonstrated these rules @ priori.
See also Annales des Mathématiques pures appliquées, by M. Gergon-
ne, vol. iv, p. 148.
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which each term of the general expressions for x, y, and z, ought
to have, according to the signs of the factors of which it is com-
posed. Thus we find, for example, that the first term of the com-
mon denominator, which is @ &’ ¢/, becoming 43 X +4 X — 6,
changes the sign of the product, and gives —72. If we observe
the same method with respect to the other terms, both of the nu-
merators and denominators, taking the sum of those which are
positive, and also of those which are negative, we obtain

2774 — 2834 —60
TR R = T2
3022 — 2032 +9o _ g
Y=Bm— T —s0
3850 — 3830 —30
Sy o BT S N

Equations of the First Degree with two or more Unknown

Quantities.
1 Sz 42y =118 z=16
"V o4 5y=191 — 35.
ba—8) =17y—44 . \
200 ygel ) e=dhy=s
20— 3y= Ty _ .
3. {19m__60y+621'E v =883 y =17
4 (130 Ty—34 =Thy+434a) P=—12,
{ 2z +1ty= 1 ; y = 50.
5 §o+y=1873 ) @ =—230.8121.
'§056m+13421y—76345 y = 58.5421 .
6 { ETD N =SEH) =9+ 1) [
2e4+10=3y 4 y =25,
7 ax=by b __ ac
' zty=c a4 y——a-{—b'
s acv—{-by:,} o= cg—>bh __ah—cf
'§fw+gy= ag—07" Y= ag =t f
a b
L. _ 52— 6 a2 2__ 32
9.¢b+y~ 3a+tz=z cc_2 %‘L-q’——ii,y:?—a—:;?b_*—d.
ax4-2by=4d
bex=cy—20b '
P14
10'§62y+a—(93———:-§—32=?—?+c3w.§m=;—’yzﬁr'
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¢ 2
(P Lt Ot e Ny =20 +20) b
_br __bf
m_'b—f’y—b-i-f'
{x‘—}—y:lo
w—{—z:lf)} =3, y="1, z=16.
y +2=23 '
x4 y+2=291
1&{%-}—3/—:::18}} =16, y =172, z=5L.
x—y -4 z=13%

11.

12.

O]

— =4"r_
14_Iw+y+z‘alw_mp+np+mq’

my:nw

=gz |y=2"P
L P 1 J mp+np+4mg
amq

CTmpFardag

—b —cd
J'gx—}—by:clw::lii_b{i; y:Z{_;d,
15. U””i;;?z/:{ L _all—fa)—d(bl—cg
Loy - J - h(ae —bd)
z
y-|—§v:'4l ]
16.{ @ +3=203 » ==18, y=32, z=10.
y+§:34
2a45y—Tz=—288
17.{bae—y +3z= 227 =13, y =24, z=1062.
7w+6y+ 2= 297
) +y -+ z =230
18. {8 +4y++22=250 r=2, y=—"1, z=361
2749y 4 32=04
1 1 2
(;+;=“ Ry N
1 1 2
19. ;+E:b y a—b+c’
1,1 2
17+;=C ——b+c-—_—z.
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2 5 1
;r; —g,;tz= %
4 1 1 2 11 —
Nty tz= O o=06y=9z=4
5 1 4
leﬁ—y—‘l“;—l%’ﬁ"J

Ezamples in Equations involving Negative Results.

1. To find a number which added to & gives a sum a
(1.) Let b =29, a=1417.
(2.) Let b=31, a =24.

2. A father is @ years, his son b years old. In how many years

will the son’s age be one fourth of his father’s ?
(L.) Leta =54, b =09.
(2.) Leta =45, b =15.

3. A cistern, into which water was let by two pipes, will be filled
by them both in a number a of hours, and by the first alone, in a
number b of hours. In what time will it be filled by the second
alone ?

(1.) Let e =12, b= 20.
(2.) Lete =12, b =10.

4. A person sent to buy oranges found that if he bought those
which cost @ pence each, he should spend all his money, but if he
bought those which cost b pence each, he should have ¢ pence left.
How many was he sent for ?

(1.) Leta =25, b =4, c=24.
(2.) Leta=4, b =6, c=24.

5. A boat, which had started from a certain place 10 days, is
pursued by another boat from the same place and by the same
way. The first goes 4 miles every day, the other 9. In how many
days will the second overtake the first?

6. Let n equal the number of days elapsed since the departure
of the first boat, a the number of miles it goes per day, and & the
number of miles the second goes per day.

7. What will be the change in the question if n = 10, a = 6,
and b = 4.

8. A courier, who goes 31} miles every 5 hours, is sent from a
certain place ; when he had gone 8 hours another is sent after
him, and this one in order to overtake the first must go 221 miles,
every 3 hours. When will the second overtake the first?
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9. When all the conditions of the preceding problem remain the
same, excepting that the first courier, besides the advantage of
starting earlier, has this also, that he travelled from a place 36 miles
farther on the road : in how many hours will they come together ?

10. Make the problem general. Let the place from which the
first starts be situated @ miles in advance on the road ; further, let
the number of hours by which he had the start of the other be
equal to & ; let the speed of the first be such that he goes ¢ miles
in d hours, and the speed of the second such that he goes e miles
in f hours. In how many hours after the departure of the second
courier will they be together ?

de—cf

11. In how many hours will they come together, when the first
courier, instead of starting from a place @ miles in advance, starts
from one as many miles backwards? What must be done in or-
der to adapt the solution of the preceding problem to this case?

12. Two bodies move in opposite directions ; one runs ¢ feet in
each second, the other- C. The two places from which they start
at the same time are distant d feet from one another. When will
they meet ?

13. In what time will the two bodies come together when that
which goes C feet each second runs after the other?

Is the problem as it is here stated always possible? What is re-

Ans. (ab+? c—thours.

quired for it to be possible 7 What does the expression C—d:; sig-

nify when C = c¢? What does it denote when C <c?

Equations of the Second Degree, having only one Unknown
Quantity.

90. Hiruerto I have been employed upon equations of the
first degree, or such as involve only the first power of the un-
known quantities ; but were the question proposed, To find a
number, which, multiplied by five times itself, will give a product
equal to 125 ; if we designate this number by , five times the
same will be 5 x, and we shall have

5a2® = 125.

This is an equation of the second degree, because it contains %
or the second power of the unknown quantity. If we free this
second power from its coefficient 5, we obtain
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2® = l—zé ,

We cannot here obtain the value of the unknown qg_amity z,
as in art. 11., and the question amounts simply to this, to find a
number which, multiplied by itself, will give 25. It is obvious that
this number is 5; but it seldlom happens that the solution is
so easy; hence arises this new numerical question; fo find a
number, which, multiplied by tself, will give a product equal to @
proposed number ; or, which is the same thing, from the second
power of a number, to retrace our steps to the number from which
it is derived, and which is called the square root. 1 shall proceed,
in the first place, to resolve this question, as it is involved in the
determination of the unknown quantities, in all equations of the
second degree.

91. The method employed in finding or extracting the roots of
nurbers, supposes the second power of such as are expressed by
only one figure to be known. See the nine primitive numbers with
their second powers written under them respectively.

1 2 3 4 5 6 7 8 9
1 4 916 25 36 49 64 8I.

It is evident from this table, that the second power of a number
expressed by one figure, contains only two figures; 10, which is
the least number expressed by two figures, has for its square a
number composed of three, 100. In order to resolve the second
power of a number consisting of two figures, we must attend to the
method by which it is formed ; for this purpose we must inquire,
how each part of the number 47, for example, is employed in the
production of the square of this number.

We may resolve 47 into 40 - 7, or into 4 tens and 7 units; if
we represent the tens of the proposed number by a, and the units
by b, the second power will be expressed by

(¢ 4+0)(a 4+b) =a*+2ab 4 8%
that is, it is made up of three parts, namely, the square of the tens,
twice the product of the tens multiplied by the units, and the square
of the units. In the example we have taken, @ = 4 tens or 40
units, and b =7 ; we have then

or a2 =25.

a? = 1600
2ab= 560
= 49

Total,  a®42ab 4 52 =2209 = 47 x 47.
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Now in order to returr, by a reverse process, from the number
2209 to"‘"_fv\.f._; bt, we may observe, that the square of the tens,
1600, I n figure, which denotes a rank inferior to hundreds,
and that }"!,"Jis the greatest square, which the 22 hundreds, compre-
hended 2209, contain ; for 22 lies between 16 and 25, that is,
between the square of 4 and that of 5, as 47 falls between 4 tens
or 40, and 5 tens or 50.

We find, therefore, upon examination, that the greatest square
contained in 22 is 16, the root of which 4 expresses the number
of tens in the root of 2200 ; subtracting 16 hundreds, or 1600,
from 2209, the remainder 609 contains double the product of the
tens by the units, 560, and the square of the units 49. But as
double the product of the tens by the units has no figure inferior
to tens, it must be found in the two first figures 60 of the remain-
der 609, which contain also the tens arising from the square of
the units. Now, if we divide 60 by double of the tens 8, and
neglect the remainder, we have a quotient 7 equal to the units
sought. If we multiply 8 by 7, we have double the product of
the tens by the units,” 560 ; subtracting this from the whole re-
mainder 609, we obtain a difference 49, which must be, and in
fact is, the square of the units.

This process may be exhibited thus;

22,00 | 47
16 |87
609
60,9
“000

We write the proposed number in the manner of a dividend,
and assign for the root the usual place of the divisor. We then
separate the units and tens by a comma, and employ only the
two first figures on the left, which contain the square of the tens
found in the root. We seek the greatest square 16, contained in
these two figures, put the root 4 in its assigned place, and subtract
16 from 22. To the remainder we bring down the two other
figures, 09, of the proposed number, separating the last, which
does not enter into double the product of the tens by the units,
and divide the remainder on the left by 8, double the tens in the
root, which gives for the quotient the units 7. In order to col-
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lect into one expression the two last parts of the square contained
in 609, we write 7 by the side of 8, which gives 81, equal to
double the tens plus the units, or 2 @ 4 b; this, maltiplied by 7
or b, reproduces 609 =2 ab 4 62 or double the product of the
tens by the units, plus the square of the units. This being sub-
tracted leaves no remainder, and the operation shows, that 47 is
the square root of 2209.

If it were required to extract the square root of 324; the ope-
ration would be as follows ;

3,24 [ 18
1

2,4 | 28
22,4

000

Proceeding as in the last example, we obtain 1 for the place
of tens of the root; this doubled gives the number 2, by which
the two first figures 22 of the remainder are to be divided. Now
22 contains 2 eleven times, but the root can neither be more than
10, nor 10; even 9 is in fact too large, for if we write 9 by the
side of 2, and multiply 29 by 9, as the rule requires, the result is
261, which cannot be subtracted from 224. We are, therefore,
to consider the division of 22 by 2 only as a means of approxi-
mating the units, and it becomes necessary to diminish the quotient
obtained, until we arrive at a product, which does not exceed the
remainder 224. The number 8 answers to this condition, since
8 X 28 = 224 ; therefore, the root sought is 18.

By resolving the square of 18 into its three parts, we find

a® = 100
2ab =160
¥ = 64
Total, 324 — 18 X 18,

and it may be seen, that the 6 tens, contained in the square of the
units, being united to 160, double the product of the tens by the
units, alters this product in such a manner, that a division of it by
double the tens will not give exactly the units.

92. It will not be difficult, after what has been said, to extract
the square root of a number, consisting of three or four figures ;
but some further observations, founded upon the principles above
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laid down, may be necessary to enable the reader to extract the
root of any number whatever.

No number less than 100 can have a square consisting of more
than four figures, since that of 100 is 10000, or the least number
expressed by five figures. In order, therefore, to analyze the
square of any number exceeding 100, of 473, for example, we
may resolve it into 470 4 3, or 47 tens plus 3 units. To obtain
its square from the formula,

a®+2ab4 07
we make a = 47 tens = 470 units, b = 3 units, then
a® = 220900
2ab = 2820
2= 9
Total, 223729 = 473 x 473.

In this example, it is evident that the square of the tens has no
figure inferior to hundreds, and this is a general principle, since
tens multiplied by tens, always give hundreds, (Arith. 32).

It is therefore in the part 2237, which remaios on the left of the
proposed number, after we have separated the tens and units, that
it is necessary to seek the square of the tens; and as 473 lies be-
tween 47 tens, or 470, and 48 tens, or 480, 2237 must fall be-
tween the square of 47 and that of 48 ; hence the greatest square
contained in 2237, will be the square of 47, or that of the tens of
the root. In order to find these tens, we must evidently proceed,
as if we had to extract the square root of 2237 only ; but instead
of arriving at an exact result, we have a remainder, which contains
the hundreds arising from double the product of the 47 tens mul-
tiplied by the units.

The operation is as follows ; _

22,37,29 | 473

16 87
63,7 943
60,9
282,9

282,9
0

We first separate the two last figures 29, and in order to extract
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the root of the number 2237, which remais.' on the left, we fur-
ther separate the two last figures 37 of this number; the pro-
posed number is then divided into portions of two figures, begin-
ning on the right and advancing to the left. Proceeding with the
two first portions as in the preceding article, we find the two first
figures 47 of the root; but we have a remainder 28, which, joined
to the two figures 29 of the last portion, contains double the pro-
duct of the 47 tens by the units, and the square of the units. We
separate the figure 9, which forms no part of double the product of
the tens by the units, and divide 282 by 94, double the 47 tens;
writing the quotient 3 by the side of 94, and multiplying 943 by 3,
we obtain 2829, a number exactly equal to the last remainder, and
the operation is completed.

93. In order to show, by what method we are to proceed with
any number of figures, however great, I shall extract the root of
22391824. Whatever this root may be, we may suppose it
capable of being vesolved into tens and units, as in the preceding
examples. As the square of the tens has no figure inferior to
hundreds, the two last figures 24 caanot make a part of it; we
may therefore separate them, and the question will be reduced
to this, to find the greatest square contained in the part 223918,
which remains on the left. This part consisting of more than
two figures, we may conclude, that the number, which expresses
the tens in the root sought, will have more than one figure ; it
may therefore be resolved, like the others, into tens and units.
As the square of the tens does not enter into the two last figures
18 of the number 223918, it must be sought in the figures 2239,
which remain on the left; and since 2239 still consists of more
than two figures, the square, which is contained in it, must have
a root which consists of at least two; the number which ex-
presses the tens sought will therefore have more than one figure ;
it is then, lastly, in 22 that we must seek the square of that,
which represents the units of the highest place in the root re-
quired. By this process, which may be extended to any length
we please, the proposed number may be divided into portions
of two figures from right to left ; it must be understood, how-
ever, that the last figure on the left may consist of only one
figure.
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Having divided the proposed number into portions as below,

we proceed with the three first portions, as 22,39,18,24 4732
in the preceding article; and when we 16 | 87
have found the three first figures 473 of the 63,9 943
root, to the remainder 189, we bring down 60,9 9462

the fourth portion 24, and consider the 301,8
number 18924, as containing double the 2829

product of the 473 tens already found by 1892,4
the units sought, plus the square of these 1892 4
units. We separate the last figure 4 ; di- 0000 0

vide those, which remain on the left, by 946, double of 473, and
then make trial of the quotient 2, as in the preceding examples.

Here the operation, in the present case, terminates; but it is
very obvious, that if we had one portion more, the four figures
already found 4732, would express the tens of a root, the units
of which would remain to be sought; we should proceed, there-
fore, 10 divide the remainder now found, together with the first fig-
ure of the following portion, by double of these tens, and so on
for each of the portions to be successively brought down.

94. If, after having brought down a portion, the remainder,
joined to the first figure of this portion, does not contain double
of the figures already found, a cipher must be placed in the root ;
for the root, in this case, will have no units of this rank; the
following portion is then to be brought down, and the operation
to be continued as before. The example subjoined will illustrate
this case. The quantities to be subtracted are  49,42,09 | 703
not put down, but the subtractions-are suppos- 04,20, 9 ] 1403
ed to be performed mentally, as in division. 0,00, 0

95. Every number, it will be perceived; is not a perfect square.
If we look at the table given, page 108, we shall see that between
the squares of each of the nine primitive numbers, there are in-
tervals comprehending many numbers,” which have no assignable
root ; 45, for instance, is not a square, since it falls between 36
and 49. It very often happens, therefore, that the number, the
root of which is sought, does not admit of one; but il we attempt
to find it, we obtain for the result the root of the greatest square,
which the number contains. 'If we seek, for example, the root of
2276, we obtain 47, and have a remainder 67, which shows, that
the greatest square contained in 2276, is that of 47 or 2209.

Alg. 15
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As a doubt may sometimes arise, after having obtained the
root of a number which is not a perfect square, whether the
root found be that of the greatest square contained in the num-
ber, I shall give a rule, by which this may be readily determined.
As the square of a b is

. a4+ 2ab 482
if we make b =1, the squale of a4 1 will be

a4 2a 41,

a quantity which differs from @2, the square of @, by double of a
plus unity. Therefore, if the root found can be augmented by
unity, or more than unity, its square, subtracted from the proposed
number, will leave o remainder at least equal to twice this root plus
um'ty Whenever this is not the case, the root obtained will be,
in fact, that of the greatest square contained in the number pro-
posed.

96. Since a fraction is mu]uplled by another fraction, when

their numerators are multiplied together, and their denominators
together, it is evident that the produét_ of a fraction multiplied by
itself, or the square of « fraction is equal to the square of its nu-
merator, divided by the square of its denominator. Hence it fol-
lows, that to extract the square root of a fraction, we extract the
square root of its numerator and that of its denominator. Thus
the root of 2% is &, because 5 is the square root of 25, and 8 that
of 64. _ :
It is very important to remark, that not only are the squares of
fractions, properly so called, always fractions, but every fractional
number which is irreducible (Arith. 59), will, when multiplied by
itself, give a fractional result, which is also irreducible.

97. This proposition depends upon the following ; Every prime
number P, which will divide the product AB of two numbers A and
B, will necessarily divide one of these numbers.

Leet us suppose, that it will not divide B, and that B is the great-
er; if we designate the eatire part of the quotient by ¢, and the
remainder by B’, wehave '

B=¢P+ B,
multiplying by, we obtain
AB = qAP + AP,
and dividing the two mémbers of this equation by P, we have

- AB
——__(_].ﬂ.*_ P 5
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from which it appears, that if /B be divisible by P, the product
AB’ will be divisible by the same number. Now B, being the
remainder after the division of B by P, must be less than P ;
therefore B’ cannot be divided by P; if we divide P by B’ we
have a quotient ¢/ and a remainder B’ ; if further we divide P
by B”, we have a quotient ¢” and a remainder B’, and so on,
since P is a prime number.

We have, therefore, the following series of equations ;

P = q/ B’ + B//’ P = 9// B _|_ B///’ &e.
multiplying each of these by /1, we obtain
AP = q/ AB’ _l_ﬂB//’ AP = q// AB + AB///’ &ec.
dividing by P, we have
11 11 1
ﬂ_qA;,B—}— ll.,;, ./1:(_]”471;-—}—11?3—,&&

From these results it is evident, that if B’ be divisible by P, the
products AB", AB", &c. will also be divisible by it. But the
remainders B’, B, B"’, &c. are becoming less and less, continu-
ally, till they finally terminate in unity, for the operation exhibited
above may be continued in the same manner, while the remainder is
greater than 1, since P is a prime number. Now when the re-
mainder becomes unity, we have the product 4 X 1, which must
be divisible by P; therefore /2 also must be divisible by P.

Hence, if the prime number P, which we have supposed not to
divide B, will not divide 4, it wxil not divide the product of these
numbers.

(This demonstration is t(lken prznczpally from the Théorie des
Nombres of M. Legendre.)

b. . . . .
98. Now when the ﬁ'actlon‘—lls irreducible, there is no prime

number which will divide, at the same time, b .and @ ; but, from
the preceding demonstration, it is evident, that cvery prime num-
ber, which will not divide a, will not divide @ X @, or o?; every
prime number; which will not divide b, will not divide 6 X &, or
b%; the numbers a® and b® are, therefore, in this case, prime to

b2 . b
each other ; and consequently the square = of the fraction 2 being

irreducible, as well as the fraction itself, cannot become an entire
number. ‘

99. From this last proposition it follows, that entire numbers,
except only such as are perfect squares, admit of no assignable root,
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either among whole numbers or fractions. Yet it is evident, that
there must be a quanuty, which, multiplied by itself, will produce
any number whatever, 2276, for instance, and that in the present
case, this quantity lies between 47 and 48; for 47 X 47 gives a
product léss than this number, and 48 X 48 gives one greater.
Dividing then' the difference between 47 and 48 by means of
fractions, we may obtain numbers that, multlphed by themselves,
will give products greater than the square of 47, but less than
that of 48, and which will approach nearer and nearer to the
number 2276.

The extraction of the square root, therefore, applied to num-
bers which are not perfect squares, makes us acquainted with a
new species of numbers, in the same manuer, as division gives
rise to fractionss but there is this difference between fractions
and the roots: of numbers which are not perfect squares; that
the former, which are always composed of a certain number of
parts of unity, have with unity a common measure, or a relation
which may be expressed by whole numbers, which the latter
have not. : ‘ .

If we conceive unity to be divided into five parts, for example,
we express the quotient arising from the division of 9 by 5, or
2, by nine of these parts; 1 then, being contained five times in
unity, and nine times 'in £, is the common measure of unity and
the fraction £, and the relation these quantities have to each other
is that of the entire numbers 5 and 9.

.Since whole numbers, as well as fractions, have a common meas-
ure with unity, we say that these quantities are commensurable with
unity, or simply that they are commensurable ; and since their re-
lations or ratios, with respect to unity, are expressed by entire
numbers, we designate both whole numbers and fractions by the
common name of rational numbers.

On the contrary, the square root of a number, which is not a
perfect square, is tncommensurable or irrational, because, as it
cannot be represented by any fraction, into whatever number of
parts we suppose unity to be divided, no one of these parts will be
sufficiently small to measure exactly, at the same time, both this
root and unity.

In order to denote, in general, that a root is to be extracted,
whether it can be exactly obtained or not, we employ the charac-
ter +/, which is called a radical sign ;



Equations of the Second Degree with one Unknown Quantity. 117

/16 is equivalent to 4,
4/2 is tncommensurable or irrational.

100. Although we cannot obtain, either among whole numbers
or fractions, the exact expression for 4/2, yet we may approxi-
mate it, to any degree we please, by converting this number into
a fraction, the denominator of which is a perfect square. The
root of the greatest square contained in the numerator will then
be that of the proposed number expressed in parts, the value of
which will be denoted by the root of the denominator.

If we convert, for example, the number 2 into twenty-fifths,
we have 2. As the root of 50 is 7, so far as it can be expressed
in whole numbers, and the root of 25 exactly 5, we obtain I, or
12 for the root of 2, to within one fifth.

101. This process, founded upon what was laid down in article
96., that the square of a fraction is expressed by the square of the
numerator divided by the square of the denominator, may evi-
dently be applied to any kind of fraction whatever, and more
readily to decimals than to others. It is manifest, indeed, from
the nature of multiplication, that the square of a number express-
ed by tenths will be hundredths, and that the square of a number
expressed by hundredths will be ten thousandths, and so on ; and
consequently, that the number of dectmal figures in the square is
always double that-of the decimal figures tn the root. 'The truth
of this remark is further evident from the rule observed in the
multiplication of decimal numbers, which requires that a product
should contain as many decimal figures, as there are in both the
factors. In any assumed case, therefore, the proposed number,
considered as the product of its root multiplied by itself, must
have twice as many decimal figures as its root.

From what has been said, it is clear, that in order to obtain
the square root of 227, for example, to within one hundredth, it
is necessary to reduce this number to ten thousandths, that is; to
annex to it four ciphers, which gives 2270000 ten thousandths.
The root of this may be extracted in the same mannner, as that
of an equal number of units ; but to show that the result is hun-
dredths, we separate the two last figures on the right by a comma.
We thus find that the root of 227 is 15,06, accurate to hundredths.
The operation may be seen below ;
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2,27,00,00 | 1506

12,7 25
20000 | 3006
19 64

If there are decimals already in the proposed number, they
should be made even. To extract, for example, the root of 51,7,
we place one cipher after this number, which makes it hun-
dredths ; we then extract the root of 51,70. If we proposed to
have one decimal more, we should place two additional ciphers
after this number, which would give 51,7000 ; we should then
obtain 7,19 for the root. ‘

If it were required to find the square root of the numbers 2
and 3 to seven places of decimals, we should annex fourteen ci-
phers to these numbers ; the result would be

V3= 1,4142136, /3 = 1,7320508.

102. When . we have found more than half the number of
figures, of which we wish the root to cousist, we may obtain the
rest simply by division. Let us take, for example, 32976 ; the
square root of this number is 181, and the remainder, 215. If
we divide this remainder 215, by 362, double of 181, and extend
the quotient to' two decimal places, we obtain 0,59, which must
be added to 151 ; the result will be 181,59 for the root of 32976,
which is accurate to within one hundredth.

In order to prove that this method is correct, let us designate
the proposed number by JV, the root of the greatest square con-
tained in this number by a, and that which it is necessary to add
to this root to make it the exact root of the proposed number by
b; we have then ,

N=0a>42ab J 12,
from which we obtain
N —a? =2 ab 4 b%;
dividing this by 2 a, we find
N—a b B
2a ~— 7T 24
From this result it is evident, that the first member may be

: .ob2
taken for the value of 0, so long as the quantity 5 18 less than a

unit of the lowest place found in . But as the square of a num-
ber cannot contain more than twice as many figures as the num-
ber itself, it follows, that if the number of figures in a exceeds

double those in b, the quantity % will then be a fraction.
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In the preceding example, @ = 181 units, or 13100 hundredths,
and consequently contains one figure more than the square of

. b? . .
59 hundredths ; the fraction then — becomes in this case,

2a
D) >§5?&):100 336280]0, and is less than a unit of the second part
59, or than a huiidredth of a unit of the first.
103. This leads to a method of approximating the square root
of a number by means of vulgar fractions. It is founded on the
circumstance, that a, bemg the root of the greatest square con-

B2
tained in JV, b is necessarily a fraction, and 3z bemcr much smal-

ler than b, may be neglected.

If it were required, for example, to extract the square root of
2; as the greatest square contained in this number is 1, if we
subtract this, we bave a remainder, 1. Dividing this remainder
by double of the root, we obtain } ; taking this quotient for the
value of the quantity b, we-have, for the first approximation to
the root, 1 4 1, or 3. - Raising this root to its square, we find 2,
which, subtracted from 2 or £, gives for a remainder — 1. In
this case the formula

ZX:a_ﬁ =b 4+ b
2a 2 a
becomes
1 b2
3= b+ 5o

Substituting — 5 for b, we have for the second approximation

3 =11; takmg the square of 11, we find 2£¢, a quantity,

2
which still exceeds 2 or 228, Subsutulmg 11 for a, we obtain

1 b2
—ExH =t
which gives
b= 1 ___ 1,
RS U7 S (-
the third approximation will then be
17 1 _ 17 xX34—1 _ 577
2T Texsi— 408 408

This operation may be easily continued to any extent we
please. I shall give, in the Supplément to this treatise, other for-
mulas more convenient for extracting roots in general.
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104. In order to approximate the square root of a fraction, the
method, which first presents itself, is, to extract, by approxima-
tion, the square root of 'the numerator and that of the denomina-
tor ; but with a little attention it'will be seen, that we may avoid
one of these operations by making the denominator a perfect
square. This is done by multiplying the two terms of the pro-
posed fraction by the denominator. If it were required, for ex-
ample, to -extract the square root of 3, we might change this
fraction into

Bx 7 2

TX1T W
by multiplying its two terms by the denominator, 7. Taking the
root of the greatest square contained in the numerator of this
fraction, we have 4 for the root of 2, accurate to within 1.

If a greater: devree of exactness were required, the fraction 2
must be changed by approximation or otherwise into another, the
dennminator of which is the square of a greater number than 7.
We shall have, for example, .the root sought within %, if we
convert 3 into 225ths, since 225 is the square of 15; thus the
fraction becomes ¢35 of one 225th, or%%, within 1+ ; 1hn root of
2% falls between Tﬂg and 12, but approaches nearer to the second
fraction than to the first, because 96 approaches nearer to a hun-
dred than to 81 ; we have then 12 or £ for the root of 3 within ;.

By employing decimals in,approxnmalmg the 1oot of the nu-
merator of the fraction 21, we obtain 4,583 for the approximate
root of the numerator 21, which is.to be divided by the root of
the new denominator. The quotient thence arising, carried to
three places of decimals, becomes 0,655.

105. We are now prepared to resolve all equations involving

only the second power of the unknown quantity connected with
known quantities.

We have only to collect into one member all the terms containing
this power, to free it from the quantities, by which it is multiplied
(11); we then obtain the value of the unknown quantity by ex-
tracting the square oot of each member.

Let there be’, for example, the equation

a2 —8=4—22%
Making the divisors to disappear, we ﬁnd first
15 2% — 168 = 84 — 14 o°.
Transposing to the first member the term 14 22, and to the sec-
ond the term 168, we have
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1522 + 14 2 = 84 + 168,

or 29 2® = 252,
and a? == 252,
T = 4/2.

It should be carefully observed, that to denote the root of the
fraction 272, the sign 4/ is made to descend below the line,
which separates the numerator from the denominator. If it were

\/22

written thus,

, the expression would designate the quotient

arising from 1he square root of the number 252 divided by 29; a
result different from 4/252, which denotes, that the division is to
be performed before the root is extracted.
Let there be the literal equation
ar? 4P =ca® 4 d?;
proceeding as with the above, we obtain successively
ar®—ca® =B —13
g B
a—¢
o= Jd;_ [,3
a—c
I would remark here, that in order to designate the square root
of a compound quantity, the upper line must be extended over the
whole radical quantity.
The root of the quantity 4 a® b — 2% 4~ ¢® is written thus,

4P —2 6 ¢,

V(4020 —203 4 ¢,

by substituting, for the line extended over the radical quantity, a
parenthesis including all the parts of the quantity, the root of which
is required. This last expression may- often appear preferable to
the other (35).

In general, every equation of the second degree of the kind we
are here considering, may, by a transposition of its terms, be re-
duced to the form

bl

or rather

p2
q
% designating the coefficient, whatever it may be, of 2% We

=a,

then obtain
2t = ‘%,
Alg. 16
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wzJﬂ,
P

106. With respect to numbers taken independently, this solution
is complete, since it is reduced to an operation upon the num-

ber either entire or fractional, which the quantity a?q represents, an
arithmetical operation leading always to an exact result, or to one,
which approaches the truth very nearly. But in regard to the
signs, with which the quantities may be affected, there remains,
after the square root is extracted, an ambiguity, in consequence of
which every equation of the second degree admits of two solutions,
while those of the first degree admit of only one.

Thus in the general equation a® = 25, the value of x, being the
quantity, which, raised to its square, will produce 25, may, if we
consider the quantities algebraically, be affected either with the
sign 4 or — ; for whether we take ++ 5, or — 5, for this value,
we have for the square

45X +5=425 or —b5 X —b=-125;
we may therefore take

z = -5,
or r = —b.
For the same reason, from the general equation
a
=22
p
we have
n= 4 Jﬂ,
p
or

x= —J@.
p

Both these expressions are comprehended in the following ;

xr = :tJﬁ_q,
p
in which the double sign == shows, that the numerical value of
' aq
p
may be affected with the sign 4~ or —.

From what bas been said, we deduce the general rule, that the
double sign == is to be considered as affecting the square root of
every quantity whatever.

It may be here asked, why x, as it is the square root of % is
not also affected with the double sign == ? We may answer, first,
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that the letter x, having been taken without a sign, that is, with
the sign +-, as the representative of the unknown quantity, it is its
value when in this state, which is the subject of inquiry ; and that,
when we seek a number a, the square of which is b, for example,
there can be only two possible solutions; @ = 4 /3, t = —
/5. Again, if in resolving the equation 2% = b, we write =& =
== /B, and arrange these expressions in all the different ways, of
which they are capable, namely,

fr=+4yvE —o=—yi

te=—vbh —a=-+473
we come to no new result, since by transposing all the terms of
the equations — & = — 4/T, — @ = - 4/b, or which is the same
thing, by changing all the signs (57), these equations become iden-
tical with the first.

107. It follows from the nature of the signs, that if the second
member of the general equation
2 29
o

were a negative number, the equation would be absurd, since the

square of a quantity affected either with the sign 4 or —, having
always the sign 4, no quantity, the square of which is negative,
can be found either among positive or negative quantities.

This is what is to be understood, when we say, that the root of
« megative quantity 1s imaginary.

If we were to meet with the equation

a? 425 =9,
we might deduce from it
x® =9 — 25,

or = —16 ;
but, there is no number, which, multiplied by itself, will produce
—16. It is true, that — 4 multiplied by +- 4, gives — 16 ; but
as these two quantities have different signs, they cannot be consid-
ered as equal, and consequently their product is not a square.
This species of contradiction, which will be more fully considered
hereafter, must be carefully distinguished from that mentioned in
art. 58., which disappears by simply changing the sign of the un-
known quantity ; here it is the sign of the square 2?, which is to
be changed.

108. To be complete, an equation of the second degree, with
only one unknown quantity, must have three kinds of terms, name-

&
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ly, those involving the square of the unknown quantity, others con-
taining the unknown quantity of the first degree, and lastly, such as
comprehend only known quantities. The following equations are
of this kind; :

®—4z =12, 4p—322=4—2a.

The first is, in some respects, more simple than the second,
because it contains only three terms, and the square of « is posi-
tive, and has only unity for a coefficient. It is to this last form,
that we are always to reduce equations of the second degree,
before resolving them; they may then be represented by this
formula, 2?4 pr =y,
in which p and ¢ denote known quantities, either positive or neg-
ative.

It is evident, that we may reduce all equations of the second de-
gree to this state, 1. by collecting into one member all the terms
involving @ (10), 2. by changing the sign of each term of the
equation, in order to render that of a® positive, if it was before
negative (57), 3. by dividing all the terms of the equation by the
multiplier of a®, if this square have a multipler (11), or by multi-
plying by its divisor, if it be divided by any number (12).

If we apply what has just been said to the equation

4gx—32a?=4—2u,
we have, by collecting into the first member all the terms involv-
ing ,

— 322?60 =4,
by changing the signs,

3P —6r=—4,
multiplying by the divisor 5,
322—30x = — 20,

dividing by the multiplier 3,
2 — 100 = — 2.

If we now compare this equation with the general formula

2?4+ pa=yq,
we shall have
p=—10, q=—23".

109. In order to arrive at the solation of equations thus pre-
pared, we should keep in mind what has been already observed
(34), namely, that the square of a quantity, composed of two
terms, always contains the square of the first term, double the pro-
duct of the first term multiplied by the second, and the square of
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the second ; consequently the first member of the equation
2 42ax+a® =0,
in which @ and b are known quantities, is a perfect square, arising
from 2 + @, and may be expressed thus,
(4 a) (4 a)=0.
If we take the square root of the first member and indicate that of
the second, we have
Z 4 a = = \/b,
an equation, which, considered with respect to «, is only of the
first degree ; and from which we obtain, by transposition,
X =—0 F4/b.
An equation of the second degree may therefore be easily resolv-
ed, whenever it can be reduced to the form
2?4+ 2ax 4 a® =1,
that is, whenever its first member is a perfect square.
But the first member of the general equation
22t pxr=q
contains already two terms, which may be considered as forming
part of the square of a binomial ; namely, ®2, which is the square
of the first term #, and pa, or double the first multiplied by the
second, which second is consequently only half of p, or 1 p. To
complete the square of the binomial @ 4 L p, there must be also
the square of the second term, I p; but this square may be form-
ed, since p and } p are known quantities, and it may be added to
the first member, if, to preserve the equality of the two members,
it be added at the same time to the second ; and this last member
will still be a known quantity.
As the square of 1 pis 1p?,if we add it to the two members
of the proposed equation,
2+ par=gq,
we shall have
et fpetip® =q+1p%
The first member of this result is the square of @ 4} p ; taking
then the root of the two members, we have
2t ip=Evg+ip’ (106);
by transposition this becomes
o=—ip Vi Ih
or which is the same thing

¢=—3p+vo+1p
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and r=—3p—wgq+ I p.

I have prefixed the sign -} to the second term % p, of the root
of the first member of the above equation, because the second
term of this member is positive ; the sign —is to be prefixed in
the contrary case, because the square #2 — 2 ¢ - a® answers to
the binomial  — a.

Any equation whatever of the second degree may be resolved,
by referring it to the general formula,

2 f+pr=gq;
or more expeditiously, by performing immediately upon the equa-
tion the operations represented under this formula, which, express-
ed in general terms, are as follows;

To make the first member of the proposed equation a perfect
square, by adding to it, and also to the second, the square of half
the given quantity, by which the first power of the unknown quan-
tity is multiplied ; then to extract the square root of each member,
observing, that the root of the first member is composed of the un-
known quantity, and half of the given number, by which the un-
known quantity in the second term is multiplied, taken with the
sign of this quantity, and that the root of the second member must
have the double sign ==, and be indicated by the sign «/, if it can-
not be obtained directly.

See this illustrated by examples.

110. To find a number such, that if it be multiplied by 7, and
this product be added to its square, the sum will be 44.

The number sought being represented by , the equation will
evidently be

x? 4+ Te=44.

In order to resolve this equation, we take I, half of the coeffi-
cient 7, by which x is multiplied ; raising it to its square we obtain -
49 ; this added to each member gives

2+ Te+ 9P =444 45
reducing the second member to a single term, we have
x? 4 Taf 4P =225,

The root of the first member, according to the rule given above, is
@ + 1, and we find for that of the second ¥ ; whence arises the
equation

pt =g,
from which we obtain

r=—171x Y,
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— 7 15 —
or =—1 5 =

2 T 2
The first value of z solves the question in the sense, in which it
was enunciated, since we have by this value

x?2 = 16
7T =28
sum 44

Asto the second value of z, since it is affected with the sign

—, the term 7 x, which becomes

7% —11 =—17,
must be subtracted from 22, so that the enunciation of the ques-
tion resolved by the number 11 is this,

To find a number such, that 7 times this number being subtracted
Jfrom its square, the remainder will be 44.

The negative value then here modifies the question in a manuer,
analogous to what takes place, as we have already seen, in equa-
tions of the first degree.

If we put the question, as enunciated above, into an equation, we
obtain ;

x? — T o =44,
this becomes, when resolved,
2? — T4 49 =44 4 49,

:c"——7ac+ 419:'2%53
r— ==,
r= % £ 1'%
r =32 =11,

z =l—Y =—3i=—4.

The negative value of x becomes positive, as it satisfies precise-
ly the new enunciation, and the positive value, which does not thus
satisfy it, becomes negative.

Hence we see, that in equations of the second degree, algebra
unites under the same formula two questions, which have a certain
analogy to each other.

111. Sometimes enunciations, which produce equations of the
second degree, admit of two solutions. The following is an ex-
ample ;

To find a number such, that if 15 be added to its square, the
sum will be equal to 8 times this number.

Let 2 be the number sought ; the equation arising from the pro-
blem is then z? 415 =8 a.
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This equation reduced to the form prescribed in art. 108., be-
comes
r?—8ax=—15,
z? —8x 416 = — 15 4 16,
r2—8x 416 =1,
r— 4==1,

r= 441,
or x= 5,
= 3.

There are therefore two different numbers 5 and 3, which fulfil
the conditions of the question.

112. Questions sometimes occur, which cannot be resolved pre-
cisely in the sense of the enunciation, and which require to be
modified. This is the case, when the two roots of the equation
are negative, as in the following example,

4S54 6=2.

This equation, which denotes, that the square of the number
sought, augmented by 5 times this number, and also by 6, will give
a sum equal to 2, evidently cannot be verified by addition, as is
implied, since 6 already exceeds 2. Indeed, if we resolve it, we
find successively

x? 4+ S =—4,
.1‘2+5.Z‘ 235_2{,__4:%,
5o+ g =%
r=—35+3i=—1,
r=—3%—3i=—1

From the sign —, with which the numbers 1 and 4 are affected, it
may be seen that the term 5 & must be subtracted from the others,
and that the true enunciation for both values is,

To find o number such, that if 5 times this number be subtracted
Jfrom its square, and 6 be added to the remainder, the result will be 2.

This enunciation furnishes the equation,

22 —ba46=2,

which gives for & the two positive values 1 and 4.

113. Again, let the following problem be proposed ;

To divide o number p into two parts, the product of which shall
be equal to q.

If we designate one of these parts by , the other will be ex-
pressed by p —a, and their product will be p x — z* ; we have
then the equation pr—at =g,
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or, changing the signs,
Pepr=—q;
resolving this last, we find
e=3pENIpPq
If now we suppose
p=10, q=2I,

we have

x =05 2 425721,
or r=5=%2,

r=1,

=3,

that is, one of the parts will be 7, and the other consequently
10 — 7, or 3.

If, on the contrary, we take 3 for , the other part will be
10— 3 or 7; so that the enunciation, as it stands, admits, strictly
speaking, of only one solution, since the second amounts simply
to a change in the order of the parts.

If we examine carefully the value of @ in the question we have
been considering, we shall see that we cannot take any numbers

2
indifferently for p and ¢, for if ¢ exceed %or the square of 1 p,

‘ .oop? . .
the quantity {1— — ¢ becomes negative, and we are presented with

that species of absurdity mentioned in art. 107.
If we take, for example,
p =10 and ¢ = 30,
we have
x="5 4 4B —30 =5 /5;
the problem then with these assumptions is impossible.

114. The absurdity of questions, which lead to imaginary roots,
is discovered only by the result, and we may wish to determine by
characters, which are found nearer to the enunciation, in what con-
sists the absurdity of the problem, which gives rise to that of the
solution ; this we shall be enabled to do by the following conside-
ration.

Let d be the difference of the two parts of the proposed num-~

. d d .
ber; the greater part will be {2) -+ 3 the less g —3 (3); but it
has been proved (29, 30, & 34) that
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oAy (e _\_P_2.
2+2) 2 2)“4“”4_’
therefore, the product of the two parts of the proposed number,
whatever they may be, will always be less than %2, or than the

square of half their sum, so long as d is any thing but zero ; when

d is nothing, each of the two parts being equal to g, their product

2
will be only Z . It is then absurd to require it to be greater ; and

it is just, that algebra should answer in a manner contradictory to
established principles, and thereby show, that what is sought does
not exist.

What has been proved concerning the equation
2

?—pr=—gq,
furnished by the preceding question, is true of all those of the
second degree, where q is negative in the second member, the on-
ly equations, which produce imaginary roots, since the term g
placed under the radical sign, preserves always the sign 4, what-
ever may be that of p. Indeed, it is evident that the equation
2dpr=—q or a>+pa+t ¢g=0,
will admit of no positive solution, since the first member contains
only affirmative terms; and, to ascertain whether the unknown
quantity @ can be negative, we have only to change @ into — Y.
The unknown quantity ¥ would then have positive values, which
would be furnished by the equation
P—py+qg=0 o P—py=—y

which is precisely the same as that in the preceding article ; but
as the values of a can be real only when those of y would be so,
they become therfore imaginary in the case under consideration,
when ¢ exceeds Z—?

It will be perceived then from what has been said, how, and for
what reason, when the known term of an equation of the second
degree is megative in the second member, and greater than the
square of half the coefficient of the first power of the unknown
quantity, this equation can have only imaginary roots.

115. The expressions

V=b a++—b

and, in general, those, which involve the square root of a negative
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quantity, are called wmaginary quantities*. 'They are mere sym-
bols of absurdity, that take the place of the value, which we
should have obtained, if the question had been possible.

They are not, however, to be neglected in the calculation, be-
cause it sometimes happens, that when they are combined accord-
ing to certain laws, the absurdity disappears, and the result be-
comes real. Examples of this kind will be found in the Supple-
ment to this treatise.

116. As it is important that learners should have just ideas re-
specting all those analytical facts, which appear to be derived from
familiar notions, I have thought it proper to add some observations
to what has been said (106), on the necessity of admitting two so-
lutions in equations of the second degree.

I shall show that, if there exists « quantity a, which, substituted
wn the place of x, wverifies the equation of the second degree,
x*+ px =1, and is consequently the value of x, this unknown
quantity will still have another value. Now, if we substitute a for
x, the result will be a® 4 p 2 = ¢; and since, by supposition, a
represents the value of «, ¢ will be necessarily equal to the quan-
tity a® + p a; we may then write this quantity in the place of ¢,
in the proposed equation, which thus becomes

@ tpr=d*+pa

Transposing all the terms of the second member, we have

x? 4+ pr—a®—pa=0,
which may be written,

2?—o2 4+ p(x—a)=0;
and because

2?2 —a® = (z 4 a) (r—a), (34),

it is obvious, at once, that the first member is divisible by & — a,
and will give an exact quotient, namely, x 4-a 4 p; we have
then,
2 fpr—q=a?—a* +p(z—a)=(z—a) (r+a+p).
Now it is evident, that a product is equal to zero, when any one
of its factors whatever becomes nothing ; we shall bave then

(e—a) (@ +a+p) =0,
not only when # — a = 0, which gives

x=a,

* Tt would be more correct to say, imaginary expressions, or sym-=
bols, as they are not quantities.
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but also when  4- a 4- p = 0, from which is deduced
x=—0a—0p.

Therefore, if a is one of the values of @, — a — p will neces-
sarily be the other.

This result agrees with the two values comprehended in the
formula

r=—3PEVe+ip;
for if we take for a the first value, — % p 4 o/ ¢ + 1 p?, We ob-
tain for the other
—ae—p=+ip—Nq+ip—p=—ip—Nq+ipr"
which is in fact the second value.

These remarks contain the germ of the general theory of equa-
tions of whatever degree, as will appear hereafter, when the sub-
ject will be resumed.

117. The difficulty of putting a problem into an equation, is
the same in questions involving the second and higher powers, as
in those involving only the first, and consists always in disentang-
ling and expressing distinctly in algebraic characters all the con-
ditions comprehended in the enunciation. The preceding ques-
tions present no difficulty of this sort; and, although the learner is
supposed to be well exercised in those of the first degree, I shall
proceed to resolve a few questions, which will furnish occasion for
some instructive remarks.

A person employed two laborers, allowing them different wages ;
the first recewed, at the end of a certain number of days, 96 francs,
and the second, having worked six days less, recewed only 54
francs 3 if this last had worked the whole number of days, and the
other had lost six days, they would both have received the same
sum ; it is required to find how many days each worked, and what
sum each recewed for a day’s work.

This problem, which at first view appears to contain several un-
known quantities, may be easily solved by means of one, because
the others may be readily expressed by this.

If x represent the number of days’ work of the first laborer,

@ — 6 will be the number of days’ work of the second,

96™ will be the dai
—— Will be the daily wages of the first,

x;__—ﬁ the daily wages of the second ;

if this last had worked « days, he would have earned
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2x 2 or 242
t—6 2z —6
and the first working © — 6 days, would have veceived only
( —6) %‘E, or %_ﬂ
The equation of the problem then will be
54z 96 (z— 6)
T —6" T )
The first step is to make the denominators disappear ; the equa-
tion then becomes
54 22 = 96 (2 — 6) (v — 6).
As the numbers 54 and 96 are both divisible by 6, the result may
be simplified by division ; we shall then have
92 = 16 (x — 6) (x — 6).
This last equation may be prepared for solution according to the
rule given art. 108., but as the object of this rule is to enable us
with more facility to extract the root of each member of the equa-
tion proposed, it is here unnecessary, because the two members
are already presented under the form of squares ; for it is evident,
that 9 «? is the square of 3, and 16 (# — 6) (z — 6) the square
of 4 (#—6). We have then
e =x4(@—06);
from which may be deduced
3x =42 —24, v = 24,
3x=—4x 424, 2z = 2.

By the first solution, the first laborer worked 24 days, and con-
sequently earned £¢ or 4 francs per day, while the second worked
only 18 days, and received £4 or 3 francs per day.

The second solution answers to another numerical question, con-
nected with the equation under counsideration, in a manner analo-
gous to what was noticed in art. 111.

118. A banker recetves two notes against the same person; the
Jirst of 550 francs, payable in seven months, the second of 720
Jrancs, payable in four months, and gives for both the sum of 1200
Srancs; it is required to find what is the annual rate of interest,
according to which these notes are discounted.

In order to avoid fractions in expressing the interest for seven
months and four months, we shall represent by 12 « the interest of
100 francs for one year ; the interest for one month will then be z.
The present value of the first note will accordingly be found by
the proportion,
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55000 :
100 + 721100 : : 550 : go—rs  (Arith. 120.);

and the present value of the second note by the proportion,

72000
100+4(L‘: 100 ::720: m.ﬂ.

By uniting these values, we obtain for the equation of the problem,
55000 72000
100 7z T 1004z = 1200.
Dividing each of the members by 200, we have
275 360
Toox 7z T 100442
making the denominators disappear, we find successwe]y,
275 (100 4 4 )+ 360 (100 + 7 x) = 6 (100 4- 7 x) (100 +4 x),
27500 41100z 4 36000 4 2520z = 60000 - 6600x - 168x2,
which may be reduced to
168 22 4- 2980 = 3500 ;
dividing by 2, we obtain
84 x2 4 1490 » = 1750,

which gives

1490 1750
Tt fT e
Comparing this equation with the formula,
x? 4+ pr=gq,
we have
1490 1750

p = 84 ’ q-— 84 b
and the expression
1 P
r=—gpE Jﬁ'— +4,
becomes
o= T8y 145 75T
84 814.84 81
Reducing the fractions, we have

745 .745 41750 . 84 __ 702025
84 .84 T 84.84°

then, since the denominator of this fraction is a perfect square, we
have only to extract the square root of its numerator. If we stop
at thousandths, we find 837,869, for the root of 702025 ; this,
taken with the denominator 84, gives for the values of
745 | 837,869 _ 92,869
84 == 7 U~ W

T == ——
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p— 45 837,869 _  1582,869
- 84 84 7T

The first of these values is the only one, which solves the ques-
tion in the sense, in which it was enunciated. Dividing the de-
nominator of this fraction by 12, we have (Arith. 54.)

120 = SE’,?@ = 13,267
that is, the annual interest is at the rate of 13,27 nearly.

119. The following question deserves attention on account of
the character, which the expression for the unknown quantity pre-
sents,

To divide o number into twe parts, the squares of which shall be
in a given ratio.

Let a be the given number,

m the ratio of the squares of its two parts,
@ one of these parts ;
the other will be a — z.
We shall then have, according to the enunciation,
2
= =

This may be resolved in two ways ; we may either reduce it to

the form @2 4 pax =g, and then resolve it by the common

method ; or since the fraction

m.

22
(= e

is a square, the numerator and denominator being each a square,

we thence conclude at once,
z

a—z + v/m,

=3 (¢ — &) y/m.
By resolving separately the two equations of the first degree com-
prehended in this forinula, namely,

w:"{“(a—‘r)\/ﬁa

x :—(a—\”) v/m,
we have
o= am
T14vm
_—a/m
T = T—m'

By the first solution, the second part of the number proposed is
ev/m __ataym—a/m a

TifvmT T 1xvm I fym’

a
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and the two parts,
a/m a
v ™Mir o

are both, as the enunciation requires, less than the number pro-

posed.
By the second solution we have
ay/m __a—a/m+am __ a .
I E T T i—va S i—vi)

and the two parts are

a
I—m 1—/m’
Their signs being opposite, the number a is strictly no longer

their sum, but their difference.
If we make m = 1, that is, if we suppose that the squares of

the two parts sought are equal, we have

vm=1;

and the first solution will give two equal parts,
a a
ga Qa

a conclusion, that is self-evident, while the second solution gives

for the results two infinite quantities (68), namely,

—a —a a a

T—1°% o and i—1%% .

This is necessary, for it is only by considering two quantities in-

finitely great, with respect to their difference «, that we can sup-
pose the ratio of their squares equal to unity.

Now, let there be the two quantities «, and « — @, the ratio of

their squares will be
zz
22 —2az+4 a?’

dividing the two terms of this fraction by a2, we obtain

but it is evident, that the greater the number z, the less will be the

.2 a? . .
fractions —2, <., and the more nearly will the above ratio ap-
z ! 22’ -

proach to i—, or 1.

120. Now in order to compare the general method with that,
which we have just employed, we develope the equation
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2
(¢« —2) (a—12)
and we have, successively,
2? =m (e —=z) (e —x),
r? =a*m—2ama -+ ma?,
2 —mzx® +2ame = a?m,
(1 —m)a? 4 2amax = a®m,

= m,

amz atm
2
z +1-—m Rl p—
kin __Ram __atm
making “1—w 1=1=w
the general formula gives
am a2 m? m
&= — %
1—m J(l——m) (1—m)+l——-m

These values of x appear very different from those, which were
found above ; yet they may be reduced to the same ; and in this
consists the utility of the example, on which 1 am employed. It
will serve to show the importance of those transformations, which
different algebraic operations produce in the expression of quan-
tities.

We must first reduce the two fractions comprehended under the
radical sign to a common denominator. This may be done by
multiplying the two terms of the second by 1 —m; we have then

a? m? m _a*m®4atm(l—m)
(l—m)(l—m)+l——m - (l=—m)(Q—m) T
a*m? 4+ a*m—az*m? __ a*m

(L—m)(l—m) — QI—m) (1 —m)
The denominator being a square, it is only necessary to extract the
root of the numerator; we then have
a? m? a? 1;1—- vaZm .
J(l—m) O=m TT=an=1—m’
but the expression 4/a2m wnay be further simplified.
It is evident that the square of a product is composed of the
product of the squares of each of its factors, for example,
bed X bed =02, c2, d2,
and consequently the root of b2 ¢2 d2 is simply the product of the
roots b, ¢, and d, of the factors 62, ¢?, and d*. Applying this
principle to the product a® m, we see that its root is the product of
a, the root of a2, by 4/m, which denotes the root of m, or that

,Ja"‘ m = adm.

Alg. 18
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It follows from these different transformations, that
am ay/m

e P Py
am—a /' m
or r= — =
1—m
am4a/m
= — —
1—m

These expressions, however simple, are still not the same as
those given in the preceding article ; if, moreover, we seek to ver-
ify them for the case, in which m = 1, they become

—a-ta_0
r=1T-1 T
_—a—a_-—?a
e e T |

We find, in the second, the sywmbol of infinity, as in the preceding
article, but the first presents this indeterminate form, g, of which
we have already seen examples in articles 69. and 70.; and before
we pronounce upon its value, it is proper to examine, whether it
does not belong to the case stated in art. 70.; whether there is not
some factor common to the numerator and denominator, which the
supposition of m = 1 renders equal to zero.
The expression —_—_27.;1_—{—_(:_@_
—m

may be resolved into

a(—m+4 /m) _als/m —m

1—m 1—m

1t is here evident, that the numerator does not become 0, except
by means of the factor /m —m; we must therefore examine,
whether this last has not some factor in common with the denomi-
pator 1 —m. In order to avoid the inconvenience arising from
the use of the radical sign, let us make 4/m = n, then taking the
squares, we have m = n? ; the quantities, therefore,
/m—m and 1 —m
become n—mn?and 1 —na2,
but n —n? =n (1 —n), and | —n? = (1 —n) (1 4 2)(34),
restoring to the place of n its value v/m, we have
vm—m=(1—4m)\/m,
[ —m=(1—/m) (1 + )
and consequently,
alvm—m) _ a(l—ym)vm _ avm
I—m  —(—va (Fvm  I+vw
a result the same, as that found in art. 119. '
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In the same manner we may reduce the second value of x, ob-
serving that
—ayvm—an _—a(l+vm)ya _—avm
1—=m  (U—ym(fym I—ym’
as in art. 119.%

It wili be seen without difficulty, that we might have avoided
radical expressions in the preceding calculations, by taking m?
to represent the ratio, which the squares of the two parts of the
proposed number have to each other ; m would then have been
the square root, which may always be considered as known,
when the square is known; but we could not have perceived
from the beginning the object of such a change in a given term,
of which algebraists often avail themselves, in order to render
calculations more simple. It is recommended to the learner,
therefore, to go over the solution again, putting m? in the place
of m.

Examples in the Extraction of the Square Roots of Numbers.

1. 4/3096 = 64.

2. 461009 = 247.

3. 4/582160 = 763.

4. 956484 = 978.

5. 457198960 = 7563. ,
6. +/5 = 2.23606 . . .
7. Vi3 = 3.60555 . . .
8. v/ = 4.69041 . ..
9. 153 = 12.36931 ...
10. /765 = 2.76586 .. .
1. i1 =1.82287...

* The example, which I have given at some length, corresponds
with a problem resolved by Clairaut, in his Algebra, the enunciation
of which is as follows ; To find on the line, which Jjoins any two lumi-
nous bodics, the point where these two bodies shine with equal light. 1
have divested this problem of the physical circumstances, which are
foreign to the object of this work, and which only divert the atten-
tion from the character of the algebraic expressions. These expres-
sions are very remarkable in themselves, and for this reason I have
developed them more fully, than they were done in the work refer-

red to.
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12. /14 =1.24721 ...
13, v111p = 3.41869 . ..
14. \/%"_ = 1.29099 ... v
15. \/g = 0.93541 . ..

Ezamples in Equations of the Second Degree involving only the
Second Power of the Unknown Quantity, and those which may
be solved without completing the Square.

1. 32 —4 =28 — a2, r=r:E4.

2ax4y:y::3:1), -
zy=18. . = = 6, y="=%3.

S5e—>by=4y . _
3'§¢”+4y"=181§ r==49, y=:=£3.

4. 25 (18—a)*=16a% 2= 10. .

5, P+ bx=>5244225, o= 65

'., 4 2 .

5 (—T) __48(z—4).

7 - z(_4 ) — z(__7 )i =19, or Y.
B8 _ Bz | .= 72, or 10%.

8’\ z  4A(z —_1§)

Ezamples in Equations of the Second Degree solved by completing
the Square.

1. 2 4+ 62 = 27. r=3, a=-—09.

2. 2*—"Ta 4+ 3L =0. a==6, =1

3. 323 — 22 = 65. r =25, x=—4;.

4. 6227 =154° 4 6384. =122 o= 183

5. 112 2— 312 =—411. r = —21, =5}

6. > —8rx=14. =4 430=94772... =4
— a0 =—1472...

1184 /174
7. 1182 — 2122 =20. .—..—-%’i*: 47.0298. . .

w:lls_g/ 342 _ C.1701 ...
8. 6 x— 30 = 3 22. z =14 =9, 2 =1—4/=0.
z 7
z+60=3x—-5' rz = 14, o = —10.
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8z 20
10. :2—_*—_—2‘—'6—_3—;. (L‘:lo, ﬁ:—%-
48 165
s =rgn—> *=5% =5
31 16
12. m:iﬁ;_‘z.’—b—*-l. w:67%’ m:4%'
2z 43 2z
13- 50— Tas—g; — 0 ==13%%, o=8
2514180 40z
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Of the Extraction of the Square Root of Algebraic Quantities.

121. We have sufficiently illustrated, by the preceding arti-"
cles, the manner of conducting the solution of literal questions.
We have given also an instance of a transformation, namely,
that of 4/a®m into @ /m, which is worthy of particular attention ;
since, by means of it, we have been able to reduce the factors,
contained uader a radical sign, to the smallest number possible,
and thus to simplify very much the extraction of the remaining
part of the root.

This transformation consists in taking the roots of all the factors
which are squares, and writing them without the radical sign, as
multiplicrs of the radical quantity, and retaining under the radical
sign all those factors, which are not squares.
~ This rule supposes, that the student is already able to deter-
mine, whether an algebraic quantity is a square, and is acquainted
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with the method of extracting the root of such a quantity. In or-
der to this, it is necessary to distinguish simple quantities from poly-
nomials.

122. It is evident, from the rule given for the exponents in mul-
tiplication, that the second power of any quantity has an exponent
double that of this quantity.

We have, for example,

ad X add=a% & Xat=4a! a®Xa=0d5 &c.

It follows then, that every factor, which is a square, must have an
exponent which is an even quantity, and that the root of this factor
1 found by writing 1its letter with an exponent equal to half the
original exponent.

Thus we have

A2 =dora, a/a*=a?, s/d®=dd &ec.

With respect to numerical factors, their roots are extracted,
when they admit of any, by the rules already given.

Whence the factors ab, 8% ¢2, in the expression

A/ 64 a8 b5 ¢t
are squares, and the number 64 is the square of 8 ; therefore, as
the expression proposed s the product of factors, which are squares,
it will have for a root the product of the roats of these several
Jactors (121) ; and, consequently,
A/64a5b%cr = 8a%b2 c.

123. In other cases, different from the above, we must endeav-
our to resolve the proposed quantity, considered as a product, into
two other products, one of which shall contain only such factors as
are squares, and the other those factors which are not squares.
To effect this, we must consider each of the quantities separately.

Lt there be, for example,

We see that among the divisors of 72, the following are perfect
squares, namely, 4, 9, and 36 ; if we take the greatest, we have
72 =36 X 2.

As the factor a® is a square, we separate it from the others ; pass-
ing then to the factor 03, which is not a square, since 3 is an odd
number, we observe that this factor may be resolved into two oth-
ers, b2 and b, the first of which is a square ; we have then

b2 =b2.0b;
it is obvious also that
' S=c.c

~
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By proceeding in the same manner with every letter, whose ex-
ponent is an odd number, the quantity is resolved thus,
72a*b3c® =36 .2a%b2 . bct. c;
by collecting the factors, which are squares, it becomes
36atb?ct X 2bec.

Lastly, taking the root of the first product and indicating that of

the second, we have
\/m:’_—& —=6a2bc? Vr[;c.

See some examples of this kind of reduction, with the steps by

which they are performed ;

o=z =i

162 502.3a
6 b,_GJ% Bab _6J2)b.ﬂ:

9.2 9.2
6.5, |3a_ 306 |3a
7 2T 7 N2

a® m?* + a®m __ |®m®+4-a2mn
n? U oa T n? -

J%z(mz +mn):;—z\/m2 + mn.

It will be seen by the first of these examples, that the denom-
inator of an algebraic fraction may be taken from under the radi-
cal sign by being made a complete square, in the same manner as
we reduce the root of a numerical fraction (104). ‘

124. We now proceed to the extraction of the square root of
polynomials. It must here be recollected, that no binomial is a
perfect square, because every simple quantity raised to a square
produces only a simple quantity, and the square of a binomial al-
ways contains three parts (34).

It would be a great mistake to suppose the binomial @ 4 & to be
the square root of &* 4 42, although, taken sepalalely, a is the root
of a2, and b that of b2; for the square of @ 4 b, or a® 4 2 a b4 b3,
contains the term - 2 @ b, which is not found in the expression
a? 4 b2,

Let there be the trinomial

24 a* 3¢ 4 16 atc? 4 915,
In order to obtain from this expression the three parts, which com-
pose the square of a binomial, we must arrange it with reference to
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one of its letters, the letter a, for example ; it then becomes
16 ate? 424 a2 b®c 4 9 08
Now, whatever be the square root sought, if we suppose it arrang-
ed with reference to the same letter a, the square of its first term
must necessarily form the first term, 16 a*c?, of the proposed
‘quantity ; double the product of the first term of the root by the
second must give the second term, 24 a2 b3¢, of the proposed
quantity ; and the square of the last term of the root must give
exactly the last term, 9 85, of the proposed quantity. The opera-
tion may be exhibited, as follows ;
16a*c? 424 a2 b%¢c + 9% ¢ 4a2c 4 3 b3 root
— 16 a* c* i 8a?c +305

+24a2b3c 4908
—24 a7 b c—9 1P

0 0

We begin by finding the square root of the first term, 16 a*c?,
and the result 4 a2 ¢ (122) is the first terin of the root, which is
to be written on the right, upon the same line with the quantity,
whose root is to be extracted.

We subtract from the proposed quantity, the square, 16 a* ¢?,
of the first term, 4 a2 ¢, of the root; there remain then only the
two terms 24 a® b3 ¢ 4~ 985,

As the term 24 a2 63 ¢ is double the product of the first term
of the root, 4 a2 ¢, by the second, we obtain this last, by dividing
24 a® b3 ¢ by 8 a2 ¢, double of 4 a? ¢, which is written below the
root ; the quotient 343 is the second term of the root.

The root is now determined ; and, if it be exact, the square of
the second term will be 965 or rather, double of the first term
of the root 8 a? ¢ together with the second 3 63, multiplied by the
second, will reproduce the two last terms of the square (91) ;
therefore we write - 34% by the side of 8 a*® ¢, and multiply
8a? ¢4 343 by 34%; after the product is subtracted from the two
last terms of the quantity proposed, nothing remains; and we
conclude, that this quantity is the square of 4 a2 ¢ 4 383,

- It is evident that the same reasoning and the sane process may
be applied to all quantities composed of three terms.

125. When the quantity, whose root is to be extracted, has
more than three terms, it is no longer the square of a binomial;
but if we suppose it the square of a trinomial, m 4~ n 4 p, and
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represent by I the sum m 4~ n, this trinomial becoming now I + p,
its square will be
E2lp -+
in which the square  of the binomial m -+ n, produces, when
developed, the terms m? 4-2mn +-n2. Now, after we have
arranged the proposed quantity, the first term will evidently be
the square of the first term of the root, and the second will con-
tain double the product of the first term of the root by the second
of this root ; we shall then obtain this last by dividing the second
term of the proposed quantity by double the root of the first.
Knowing then the two first terms of the root sought, we complete
the square of these two terms, represented here by 12 ; subtract-
ing this square from the proposed quantity, we have for a re-
mainder ‘
21p+ p*,
a quantity, which contains double the product of I, or of the first
binomial m - n, by the remainder of the root, plus the square
of this remainder. It is evident, therefore, that we must proceed
with this binomial as we have done with the first term m of the
root.
Let there be, for example, the quantity
64a2bc4 2560202 —40ab + 16 a* + 6402 ¢2 —80a b2 c;
we arrange it with reference to the letter @, and make the same
disposition of the several parts of the operation asin the above

example.
16a*—40a%0 4250202 —80ub?c4-64b2c* [ 4a* — 5ab--8bc
+64a2be 8a* — bab
—16a* 8a? — 10ab--8bc
1st rem.—40a% 425a262—80ab2c}64b2¢2
+64a2be
+40a%—25a%b?
2drem. ..... +-64a2bc—80ab? c{-64b2c?

—64a2bc+4+80ab? c—64b2c?

0 0 0

We extract the square root of the first term 16 a*, and obtain
4 a2 for the first term of the root sought, the square of which is
to be subtracted from the proposed quantity.

We double the first term of the root, and write the result, 8 a2,
under the root; dividing by this the term — 404a® b, which be-
gins the first remainder, we have — 5 a b for the second term of

Alg. 19
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the root ; this is to be placed by the side of 8 a?; we then multi-
ply the whole by this second term, and subtract the result from the
remainder, upon which we are employed.

Thus we have subtracted from the proposed quantity the square
of the binomial 4 a2 — 5a b ; the second remainder can contain
only double the product of this binomial, by the third term of the
root, together with the square of this term ; we take then double
the quantity 4 a* —5a b, or

8a?—10ab,
which is written under 8 a2 — 5 a b, and constitutes the divisor to
be used with the second remainder ; the first term of the quotient,
which is 8 b ¢, is the third of the root.

This term we write by the side of 8a? — 10 ab, and multiply
the whole expression by it; the product being subtracted from the
remainder under consideration, nothing is left ; the quantity pro-
posed, therefore, is the square of

4a? —5ab-+8be.

The above operation, which is perfectly analogous to that, which
has been already applied to numbers, may be extended to any
length we please.

Ezamples in the Abbreviation and Transformation of Radical
Quantities.

1. /21 4 /54— 4/6 = 4 4/6.

2. 24/8—Ty/I8 4+ 5473 — /50 = 84/3.

3. V1242497 +3475—9 438 = —134/3.

1 2vi +~/6T)—v1‘5+v‘ BV

5. 7v54+3v16+v2-5v128~ Sv2

6. VB1—2V24 -+ v28 +2v63 = 8v7—v3-

7. v32+2v40_2V2+4vo

8. 3\/5—2v2+3\/6_v45—vs+y154

9. 5v7+ 3v2+2v3 —v875+v18+v4b.

10. 4v +3v2—5v——~/512+v54—v§5
11. /3533 —4/80¢3 + 4/5a%c = (a —¢) v/5c.
12. v18a5b3+v50a3b3 (8a96+ 5ab)y/2ab.

13. v16a3b + VvEa?b — 4/ab —v54a3b = avb—-av%

02c3 a2c d? ac ad
'J‘I;TJF W‘J (b v T)Ja
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3
R7 a5z
15. JW— e =(3a— 1)J

16. 352 Va3c+ Vasd— ¢t JM = (3ab3 + 2a? -——)Vac
1. 5aJ—+be263 + 29 v,

Examples in the Extraction of the Square Root of Algebraic
Euxpressions.

J(a"—ab +4— —-a——

o/ (@@ 6a3at+9a®) =da® 4 3at.
G e ) =
v (Farbr—%aber ) =5ab—% 2.
v +2ab+2ac+ b +2bc+c?)=a+4b+e

4
J(9w2—30aw—3a2w+25 a? +5a3-|—z—> —

gwcn»boom

3x—5a—g—2.
v/ (4 +8aa44a* 2241607 2 4 16 a b2 x -+ 16 5%
=2a®+2ax 4 452
v(E+62—1722 —282°+ 492') =32 4 22— T2

.J(Qw‘—fiawa—i-ﬁb'w" + b2 wa)

=3w"——-a-f+bw.

-3

© o

10. o/ ((a?xt—2ab2®z + S a2ba®2? 4 b2 23 22
—4ab? 22®+ 402 b2 z4)_—aw2—-bxz+2abz’.

11. o/ (9a* —6ab+30ac+6ad+ b2 —10bc—2bd
+25¢8 4 10cd +d?) =3a—b+ 5c+d.

Examples in the Extraction of the Square Roots of Incomplete

Squares.
. 2\ 2?2t 8 528
Ly —at) == — 53— 5 Ima """

74 26 528

22
2. V(a*-}—ac”)_a-l—ga B—aa+f(i713 128a7+
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z 72 23 54
8./ l—2) =1—5 —5— {5 — 135 —
_ x 22 23 524
bvilta) =l+5—5g+ 16— 1@ +--

Of the Formation of Powers and the Extraction of their Roots.

126. THE arithmetical operation, upon which the resolution of
equations of the second degree depends, and by which we ascend
from the square of a quantity to the quantity, from which it is
derived, or to the square root, is only a particular case of a
more general problem, namely, to find a number, any power of
which s known. The investigation of this problem leads to a
result, that is still termed a root, the different kinds being called
degrees ; but the process is to be understood only by a careful ex-
amination of the steps by which a power is obtained, one opera-
tion being the reverse of the other, as we observe with respect to
division and multiplication, with which it will soon be perceived
that this subject has other relations.

It is by mulnphcauon, that we arrive at the powers of entire
numbers (24), and it is evident, that those of fractions also are
formed by raising the numerator and denominator to the power
proposed (96).

So also the root of a fraction, of whatever degree, is obtained
by taking the corresponding root of the numerator and that of
the denominator.

As algebraic symbols are of great use in expressing every
thing, which relates to the composition and decomposition of quan-
tities, I shall first consider how the powers of algebraic expressions
are formed, those of numbers being easily found by the methods
* that have already been given (24).

Table of the first Seven Powers of Numbers from 1 to 9.

IstiL[ 2] 5 4 5 6 7 8 9
2d |1 | 4] 9 16/ 25 36 49 64 81
3|1 8 21 64 125 210|843 512 729
4h|L [ 16| S.{ 256/ 625  206( 2401 4096 6561
5ib{l | 32| 243 1024] 3125 7770| 16807 32768 59049
6th{i | 64] 729 4096|15625] 46656(117649| 262144| 531441
Tth|1 |128|2157(16384|78125279936/323543|2097152|4762969
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This table is intended particularly to show with what rapidity
the higher powers of numbers increase, a circumstance that will
be found to be of great importance hereafter ; we see, for in-
stance, that the seventh power of 2 is 128, and that of 9 amounts
to 4782969.

It will hence be readily perceived that the powers of fractions,
properly so called, decrease very rapidly, since the powers of the
denominator become greater and greater in comparison with
those of the numerator. The seventh power of 1, for example,
is 1155 and that of 1 is only

1
4782969

127. It is evident from what has been said, that in a product
each letter has for an exponent the sum of the exponents of its
several factors (26), that the power of a simple quantity is obtain-
ed by multiplying the exponent of each factor by the exponent of
this power.

The third power of a??? ¢, for example, is found by multiplying
the exponents 2, 3, and 1, of the letters a, b, and ¢, by 3, the ex-
ponent of the power required ; we have then a®4° ¢®; the operas
tion may be thus represented,

@WexabPeX alPc=a®303:3¢-3,

If the proposed quantity have a numerical coefficient, this co-
efficient must also be raised to the same power; thus the fourth
power of 3 ab?c5, is

81 a* 18 ¢,

128. With respect to the signs, with which simple quantities
may be affected, it must be observed, that every power, the expo-
nent of which is an even number, has the sign 4, and every power,
the exponent of which is an odd number, has the same sign as the
quantity from which it is formed.

In fact powers of an even degree arise from the multiplication
of an even number of factors; and the signs —, combined two and
two in the multiplication, always give the sign - in the product
(31). On the contrary, if the number of factors is uneven, the

~ product will have the sign —, when the factors have this sign,
since this product will arise from that of an even number of fac-
tors, multiplied by a negative factor.

129. In order to ascend from the power of a quantity, to the
root from which it is derived, we have only to reverse the rules
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given above, that is, to divide the exponent of each letter by that,
which marks the degrec of the root required.

Thus we find the cube root, or the root of the third degree, of
the expression a®° ¢3, by dividing the exponents 6, 9, and 3, by
3, which gives

e

When the proposed expression has a numerical coefficient, its
root must be taken for the coefficient of the literal quantity, obtain-
ed by the preceding rule.

If it were required, for example, to find the fourth root of
81 a* b8 ¢®, we see, by referring to the table, art. 126., that 81 is the
fourth power of 33 then, dividing the exponent of each of the
letters by 4, we obtain for the result

3a bl

When the root of the numerical coefficient cannot be found by
the table inserted above, it must be extracted by the methods to be
given hereafter.

130. It is evident, that the roots of the literal part of simple
quantities can be extracted, only when each of the exponents is
divisible by that of the root; in the contrary case, we can only
indicate the arithmetical operation, which is to be performed
whenever numbers are substituted in the place of the letters.

We use for this purpose the sign 4/~ ; but to designate the de-
gree of the root, we place the exponent as in the following ex-
pressions,

3 5

Va, Va
the first of which represents the cube root, or the root of the
third degree of a, and the second the fifth root of a2

We may often simplify radical expressions of any degree
whatever, by observing, according to art. 127., that any power
of a product s made up of the product of the same power of each of
the factors, and that, consequently, any root of a product is made
up of the product of the roots of the same degree of the several
Sactors. Tt follows from this last principle, that, if the quantity
placed under the radical sign have fuctors, which are exact powers
of the degree denoted by this sign, the roots of these factors may
be taken separately, and their product multiplied by the root of the
other factors indicated by the sign.

Let there be, for example,

5
/96 a5 b7 cll,



Formation of Powers and the Extraction of their Roots. 151

It may be seen that,
96 =32 X 3=25.3,

that a® s the fifth power of a,
that O =007,
that b =c0.c;

we have then
96 P b7 Mt =2%a505¢° X 3 B¢

As the first factor, 2% a® 0 ¢, has for its fifth root the quantity

2 a b c?, the expression becomes
jﬁd&m = Qabchs/m.

131. As every even power has the sign 4 (128), a quantity,
affectetl with the sign —, cannot be a power of a degree denoted
by an even number, and it can have no root of this degree. It
follows from this, that every radical expression of a degree which
1s denoted by an even number, and which involves a negative quan-

tity, 1is umaginary, thus

4 6 8
V=a, v—=db b+v—ali,
are imaginary expressiois.

We cannot, therefore, either exactly or by approximation, as-
sign for a degree, the exponent of which is an even number, any
roots but those of positive quantities, and these roots may be affect-
ed indyfferently with the sign 4 or —, because, in either case,
they will equally reproduce the proposed quantity with the sign 4,
and we do not know to which class they belong.

The same cannot be said of degrees expressed by an odd num-
ber, for here the powers have the same sign as their roots (128);
and we must give to the roots of these degrees the sign, with which
the power is affected ; and no imaginary expressions occur.

132. Itis proper to observe, that the application of the rule
given in art. 129, for the extraction of the roots of simple quan-~
tities, by means of the exponent of their factors, leads to a more
convenient method of indicating roots, which cannot be obtained
algebraically, than by the sign 4/.

If it were required, for example, to find the third root of a5, it
is necessary, according to the rule given above, to divide the ex-
ponent 5 by 3 ; but as we cannot perform the division, we have
for the quotient the [ractional number £ ; and this form of the ex-
pouent indicates, that the extraction of the root is not possible in
the actual state of the quantity proposed. We may, therefore,
consider the two expressions
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3 5
vd5 and a3
as equivalent.
The second, however, has this advantage over the first, that it

3
leads directly to a more simple form, which the quantity 4/"a5 is ca-
pable of assuming ; for if we take the whole number contained in
the fraction &, we have 1 4 2 as an equivalent exponent ; conse-
quently,

5 2
a® =d'+ 2 =al X a® (25);
5

from which it is evident, that the quantity a® is composed of two

3
factors, the first of which is rational, and the other becomes 4/a2.
The same result, indeed, may be obtained from the quantity

under the form 3;5, by the rule given in art. 130., but the frac-
tional exponent suggests it immediately. We shall have occasion
to notice in other operations the advantages of fractional expo-
nents.

We will merely observe for the present, that as the division of
exponents, when it can be performed, answers to the extraction of
roots, the indication of this division under the form of a fraction
is to be regarded as the symbol of the same operation ; whence,

Jﬁ and a%n
are equivalent expressions.

We have rules then, which result from the assumed manner of
expressing powers, which lead to particular symbols, as, in art. 37.,
we arrived at the expression a° = 1.

133. It may be observed here, that as we divide one power by
another, by subtracting the exponent of the latter from that of the
former (36), fractions of a particular description may readily be
reduced to new forms. .

By applying the rule above referred to, we have

: o
aﬂ
but if the exponent n of the denominator exceed the exponent m
of the numerator, the exponent of the letter @ in the second mem-

ber will be negative.
If, for example, m = 2, n = 3, we have
a?

@ __ a3 __ 1.
A=V T =

— Ay T—T o
=a™";
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a®
but by another method ot simplifying the fraction - We find it is

1 .
equal to = the expressions

1
-~ and @7,
a

are therefore equivalent.
In general, we obtain by the rule for the exponents,

am .
g = e =,
and by another method
a~ 1
am . T o’

it follows from this, that the expressions

1
— and
a’ll

are equivalent.

In fact, the sign —, which precedes the exponent n, being
taken in the sense defined in art. 62., shows that the exponent in
question arises from a fraction, the denominator of which contains
the factor a, # times more than the numerator, which fraction is

. 1 . . .

indeed —; we may, therefore, in any case which occurs, substi-
a

tute one of these expressions for the other.

The quantlty for example, being considered as equiva-

P d35
lent to

ab® X :—2 X %p
may be reduced to the following form,
a2 b5 2 d-3;
that is, we may transfer to the numerator all the factors of the de-
nominator, by giving to their exponents the sign —.

Reciprocally, when a quantity contains factors, which have nega-
tive exponents, we may convert them into a denominator, observing
merely to give to their exponents the sign -4 ; thus the quantity

a® P ¢ d-3,
becomes
a2 b5
c? d¥

Of the Formation of the Powers of Compound Quantities.

134. WE shall begin this section by observing, that the powers
of compound quantities are denoted by including these quantities
Alg. 20
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in a parenthesis, to which is annexed the exponent of the power.
The expression
(4a®*—2ab+ 50,
for example, denotes the third power of the uantity,
4 —2ab 4502
This power may also be expressed thus,
1a8—2abF50%3

135. Binomials next to simple quantities are the least compli-
cated, yet if we undertake to form powers of these by successive
multiplications, we in this way arrive only at particular results, as,
in art. 34., we obtained the second and third power; thus

(a:+a)9—-a:2+2aa: + @,

(@ +af =2+ 3a2* 43 Px 4 &,

(z4a)=a+ 40’ + 602> +4 x4 o,

&e.

It is not easy from this table to fix upon the law, which deter-
mines the value of the numerical coefficients. But by consider-
ing how the terms are multiplied into each other, we perceive,
that the coefficients have their origin in reductions depending on
the equality of the factors, which form a power. This is render-
ed very evident by an arrangement, which prevents these reduc-
tions from taking place.

Tt is sufficient for this purpose to give to the several binomials to
be multiplied different second terms. If we take, for example,

z24a, z4+0, x4c x4 d, &ec.
by performing the multiplications indicated below, and placing in
the same column the terms, which involve the same power of «,
we shall immediately find, that
(z40a) (x40) =a®>4 ar +ad
+ ba
(x4a) (246 (2 + ¢) = 2® 4 aa® + abr + abe
4 ba® + acx
4 ca® + bex
(x4a) (24 0) (x4 ¢ (2 + d) = 2* + a2® 4 aba?® + abex+-abed
+ ba® 4 acx? 4 abdr
+ e + adx® 4~ acdx
+ da? 4 bez? 4 bedx
+ bdx?
+ cdx?
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Without carrying these products any further, we may discover
the law according to which they are formed.

By supposing all the terms involving the same power of a,
and placed in the same column, to form only one, as, for ex-
ample,

Bbad e+ dad = (a4 b4 c+d)d,
&e.

(1.) We find in each product one term more than there are units
i the number of factors.

(2.) The exponent of x in the first term is the same as the num-
ber of factors, and goes on decreasing by unity in each of the fol-
lowing terms.

(3.) The greatest power of x has unity for its coefficient ; the
Sfollowing, or that, whose cxponent 1is one less, is multiplied by the
sum of the second terms of the binomials ; that, whose exponent is
two less, is multiplied by the sum of the different products of the
second terms of the binomials taken two and two ; that whose ex-
ponent is three less, is multiplied by the sum of the different pro-
ducts of the second term of the binomials, taken three and three,
and so on ; in the last term, the exponent of x, being considered
as zero (37), is equal to that of the first diminished by as many
units as there are factors employed, and this term contains the product
of all the second terms of the binomials.

It is manifest, that the form of these products must be subject
to the same laws, whatever be the number of factors; as may be
shown by other evidence beside that from analogy.

136. It will be seen immediately, that the products, of which
we are speaking, imust contain the successive powers of x, from
that, whose exponent is equal to the number of factors employed,
to that, whose exponent is zero. To present this proposition under
a general form, we shall express the number of factors by the let-
ter m ; the successive powers of x will then be denoted by

am, gL, a™2, K.

We shall employ the letters A, B, C, ..........%,
to express the quantities, by which these powers, beginning with
™, are to be multiplied ; but as the number cf terms, which de-
pends on the particular value given to the exponent, will remain in-
determinate, so long as this exponent has no particular value, we
can write only the first and last terms of the expression, designat-
ing the intermediate terms by a series of points.
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The formula then
a4+ Aa™ 1 Bam24 Cam™3 ... .. + Y,
represents the product of any number m of factors,
-+ a2+ b o+ ¢ x4 d, &e.

If we multiply this by a new factor @ 4 /, it becomes

an—l i Aag™ 4+ Bam14 Cam2....
4+ la +lAa - IBa™2.... + 1Y E ’

It is evident, 1. that if «/ is the sum of the m second terms
a,b,c,d, &c. A4 will be that of the m 4 1 second terms
a,b, c,d, &c. I, and that consequently the expression employed
to denote the coefficient will be true for the product of the degree
m - 1, if it is true for that of the degree m.

2. If B is the sum of the products of the m quantities &, b, ¢, d,
&e. taken two and two, B + !/ will express that of the products
of the m 4 1 quantities a, b, ¢, d, &c. [, taken also two and two ;
for A being the sum of the first, 7.4 will be that of their products
by the new quantity introduced /; therefore the expression em-
ployed will be true for the degree m - 1, if it is for the degree m.

If C is the sum of the products of the m quantities «, b, ¢, d,
&e. taken three and three, C 4 B will be that of the products
of the m - 1 quantities a, b, ¢, d, &c. [, taken also three and three,
since ! B, from what has been said, will express the sum of the
products of the first taken two and two, multiplied by the new
quantity introduced [ ; therefore, the expression employed will be
true for the degree m + 1, if it is true for the degree m.

It will be seen, that this mode of reasoning may be extended to
all the terms, and that the last, 7 Y, will be the product of m 4 1
second terms.

The propositions laid down in art. 135., being true for expres-
sions of the fourth degree, for example, will be so, according to
what has just been proved, for those of the fifth, for those of the
sixth, and, being extended thus from one degree to another, they
may be shown to be true generally.

It follows from this, that the product of any number whatever
m, of binomial factors 4 a, z 4 b, @ 4 ¢,  + d, &c. being
represented by

a® 4+ Aa™ 4 Bam? 4 Cam 4 &ec.
A will always be the sum of the m letters a, b, ¢, &c., B that of
the products of these quantities, taken two and two, C that of the
products of the quantities, taken three and three, and so on.
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To comprehend the law of this expression in a single term, I take
one, whose place is indeterminate, and which may be represented
by N am—.

This term will be the second, if we make n = 1, the third,
if we make n = 2, the eleventh, if we make n = 10, &c. In the
first case, the letter JV will be the sum of the m letters «, b, c,
&ec. in the second, that of their products, when taken two and two ;
in the third, that of their products, when taken ten and ten ; and in
general, that of their products, taken » and n.

137. To change the products

(24 a) (2 +0), (24 1) (e +b) (z + ),
(x+4a) (#48) (x +¢) (x4 d), &e.
into powers of « -}~ @, namely, into

(z 4+ a)® (x + @),

(z + a)f &ec.
it is only necessary to make, in the developement of these products,
a=10, a=0=c,

e="b=c=d, &ec.

All the quantities, by which the same power of z is multiplied,
become in this case equal ; thus the coeflicient of the second term,
which in the product

(+a)(@+4b) (x4c) (e +d)isa4b4c4d,

is changed into 4 a; that of the third term in the same product,
which is,

abtact+ad+betbd -+ cd,
becomes 6 @?. Hence it is easy to see, that the coeflicients of
the different powers of « will be changed into a single power of a,
repeated as many times as there are terms, and distinguished by
the number of factors contained in each of these terms. Thus,
the coeflicient JV, by which the power 2™ is multiplied, will, in
the general developement, be that power of a denoted by =, or a,
repeated as many times, as we can form different products by
taking in every possible way a number n of letters from among a
number m ; to find the coefficient of the term containing @™ then
is reduced to finding the number of these products.

138. In order to perform the problem just mentioned, it is
necessary to distinguish arrangements or permutations from pro-
ducts or combinations. Two letters, ¢ and b, give only one pro-
duct, but admit of two arrangements, ab and b a; three letters,
a, b, ¢, which give only one product, admit of six arrangements
(88), and so on.
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To take a particular case, I will suppose the whole number of

letters to be nine, namely,

a, b’ 2 d) e;f; & ka i,
and that it is required to arrange them in sets of seven. It is
evident, that if we take any arrangement we please, of six of
these letters, abcde f, for example, we may join successively to
it each of the three remaining letters, g, &, and ¢; we shall then
have three arrangements of seven letters, namely,
abedefg, abedefh, abedefi.

What has been said of a particular arrangement of six letters,
is equally true of all; we conclude, therefore, that each arrange-
ment of six letters will give three of seven, that is, as many as
there remain letters, which are not employed. If therefore, the
number of arrangements of six letters be represented by P, we
shall obtain the number consisting of seven letters by multiplying
P by 3 or 9— 6. Representing the numbers 9 and 7 by m and
n, and regarding P as expressing the number of arrangements,
which can be furnished by m letters, taken n—1 at a time, the
same reasoning may be employed ; we shall thus have for the
number of arrangements of n letters,

P (m— (n—1)), or P (m—n+1).

This formula comprehends all the particular cases, that can
occur in any question. To find, for example, the number of
arrangements, that can be formed out of m letters, taken two and
two, or two at a time, we make n = 2, which gives

n—1=1;
we have then
P=m;
for P will in this case be equal to the number of letters taken one
at a time ; there results then from this
m (m—2 4 1), or m (m — 1),
for the number of arrangements taken two and two.
Again, taking
P=m(@m—1) and n=23,
we find for the number of arrangements, which m letters admit of,
taken three and three, .
m(m—1) (m—3+1)=m(@m—1) (m—2).
Making
P=m(m—1)(m—2) and n=4,



Powers of Compound Quantities. 159

we obtain
for the number of arrangements taken four and four. We may
thus determine the number of arrangements, which may be formed
from any number whatever of letters.®

139. Passing now from the number of arrangements of n let-
ters, to that of their different products, we must find the number
of arrangements, which the same product admits of. In order to
this, it may be observed, that if in any of these arrangements, we
put one of the letters in the first place, we may form of all the
others as many permutations, as the product of n—1 letters
admits of. Let us take, for example, the product a bcdefg,
composed of seven letters ; we may, by putting @ in the first place,
write this product in as many ways, as there are arrangements in
the product of six letters b ¢ d e f g ; but each letter of the pro-
posed product may be placed first. Designating then the number
of arrangements, of which a product of six letters is susceptible,
by @, we shall have @ x 7 for that of the arrangements of a
product of seven letters. It follows from this, that if @ designate
the number of arrangements, which may be formed frori a product
of n — 1 letters, @ n will express the number of arrangements of
a product of n letters.

* In these arrangements it is supposed by the nature of the inquiry,
that there are no repetitions of the same letter ; but the theory of
permutations and combinations, which is the foundation of the doc-
trine of chances, embraces questions in which they occur. The effect
may be seen in the example we have selected, by observing, that we
may write indifferently each of the 9 letters a, b, ¢, d,’e, f, g, h, 1, after
the product of 6 letters b c de f. Designating, therefore, the num-
ber of arrangements, taken six at a time, by P, we shall have P X 9
for the number of arrangements, taken 7 at a time. For the same
reason, if P denote the number of arrangements of m letters, taken
n —1 at a time, that of their arrangements, when taken » at a time,
will be P m.

This being admitted, as the number of arrangements of m letters,
taken one at a time, is evidently m, the number of arrangements,
when taken 2 and 2, will be m X m, or m?, when taken 3 and 3, the
number will be m X m X m, or m3; and lastly, m" will express the
number of arrangements, when they are taken n and n.
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Any particular case is readily reduced to this formula ; for making
n = 2, and observing, that when there 1s only“one letter, @ =1,
we have 1 X 2 = 2 for the number of arrangements of a product of
two letters. Again, taking Q =1 X 2 and n = 3, we have
1 X 2 X 3 =6 for the number of arrangements of a product of
three letters ; further, making @ =1 X 2 X 3 and n =4, there
result 1 X 2 X 3X 4, or 24 possible arrangements in a product
of four letters, and so on.

140. What we have now said being well understood, it will
be perceived, that by dividing the whole number of arrange-
ments obtained from m leuters, taken n at a time, by the number
of arrangements of which the same product is susceptible, we
have for a quotient the number of the different products, which
are formed by taking in all possible ways n factors among
these m letters. This number will, therefore, be expressed by

P(m—n . . . . .
———(—+—),* which being considered in connexion with

QRn
Pt o

what was laid down in art. 137., will give ——~—

for the term containing 2™ in the developement of (x 4 a)™
It is evident, that the term which precedes this will be ex-

r . .
pressed by-Q a1 gmtls for in going back towards the first

term, the exponent of x is increased by unity, and that of a
diminished by unity; moreover, I and @ are the quantities,
which belong to the number n — 1.

P . ..
141. If we make == = M, the two successive terms indicated

Q

above, become
M a1 gt and T2 g g,

* It may be observed, that if we make successively
n=2, n=3, n =4, &ec.

the formula P (m TQ—n—i_—l—) becomes

m(m—-l) m (m—1) (m—2) m (m—1) (m —2) (m——3) &

1.2 1.2.3 1.2.3.4 ’
numbers, which express respectively, how many combinations may
be made of any number m of things, taken two and two, three and
three, four and four, &c.




Powers of Compound Quantities. 161

These results show how each term in the developement of (z + a)™,
is formed from the preceding.

Setting out from the first term, which is a™, we arrive at the
second, by making 2 = 1; we have J{ = 1, since 2™ has only

. . . . Ixm
unity for its coeflicient; the result then is >i ax™ ! or

?ax’"—l. In order to pass to the third term, we make .M’:’—';,

and n =2, and we obtain ) (” 5 1) a® a2 The fourth is
found by supposing M = L(T;—l), and n =3, which gives
m (m—1) (m—2)

1.2.3
mula

a® ™3, and so onj; whence we have the for-

n —1
((I) + (1)’" I +?i CLm—l—{— _(L‘_ﬁ) ag am—2

+ . (ml—lﬁz) (;”“'2) a® 2" 4 &e.
which may be converted into this rule.

To pass from one term to the following, we multiply the numerical
cocfficient by the exponent of x in the first, divide by the number
which marks the place of this term, increase by unity the exponent of
a, and diminash by unity the exponent of x.

Although we camuot determine the number of terms of this
formula without assigning a particular value to m; yet, if we
observe the dependence of the terms upon each other, we can
have no doubt respecting the law of their formation, to whatever
extent the series may be carried. It will be seen, that

m(m—1)(m—2).. (m—-n—{—l)an o
.2 . 3.... n
expresses the term, which lms n terms before it.
This last formula is called the general term of the series

m (m— 1) & 3 4 &e.

o g
because if we make successively
n=1 n=2, n=3,&ec.
it gives all the terms of this series.
142. Now, if (z + a)° be developed, according to the rule
given in the preceding article ; the first term being
z® or a’® (37),

Alg. 21
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the second will be

5
ia‘ a* or Sadxt

the third

Q;-éaﬂ 2 or 10a?a%
the fourth

10; 3 ada® or 10d® 2,
the fifth

10x2 a‘x or 5atz,
the sixth

5 X

“2>-a’x® or o

Here the process termmates, because in passing to the following
term it would be necessary to multiply by the exponent of « in the
sixth, which is zero.

This may be shown by the formula; for the seventh term,
having for a numerical coefficient

m (m—1) (m—2) (m — 3) (m—4) (m—5)
1.2 .3 .4 .5 .6
contamns the factor m — 5, which becomes 5 — 5 =03 and this
same factor entering into each of the subsequent terms, reduces it
to nothing.
Uniting the terms obtained above, we have
(x4+a)f =a®*4 65aa* + 10a®2® 4+ 10¢® 2® + 5a* x 4 a°.

143. Any power whatever of any binomial may be developed
by the formula given in art. 141. If it were required for example
to form the sixth power of 2 2® — 5 @3, we have only to substitute

in the formula the powers of 2 «® and — 5 a?® respectively for those
of = and a; since, if we make

21 =2 and — 5 a® = &/,
we have
(2a*—5a®= (2 4+ o) =
264 6@ 4 150224 4 20 /30 3
+ 15042 4 60’50 + /8 (141),
and 1t is on]y necessary to substitute for @/ and ¢’ the quantities,
which these letters designate. We have then
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(223 + 6(—5d%) (22%)° 4 15— 5 a%)® (2 23)*
+ 20 (— 5 @®) (2 2*) 4 15— 5 @)t (249)°
+ 6(—50a%3(22%) + (—5 ¥,
or
64 2*—960a®2® 4 6000 af 2™
— 20000 6°2® + 37500 a2 ab
— 37500 0¥ 2® + 15625 a'®,

The terms produced by this developement are alternately positive
and negative ; and it is manifest, that they will always be so, when
the second term of the proposed binomial has the sign —.

144. The formula given in art. 141, may be so expressed as to
facilitate the application of it in cases analogous to the preceding.

Since

zm ™
mm—l — ;__, mm—? — a;T’ wm-—3= ;_ &C-

the formula may be written
o + ma + m (m
which may be reduced to

gl +___+m(m-—-l)::+m(n; .1%(1?._2)a8+&c ;

_ by insulating the common factor ™. In applying this formula,
the several steps are, o form the series of numbers,

2—)%w + &e.

m m—1 m—2 m—3
T g 5 a e

to multiply the first by the fraction g, then this product by the second
and also by the fraction ;, then again this last result by the

third and by the fraction Z, and so on; to unite all these terms,

and add unity to the sum ; and lastly, to multiply the whole by the
Sfactor x™.
In the example (2 28— 5 %)% we must write (22%)° in the
3
place of ™, and —-—g—zgin that of g. I shall leave the application
of the formula as an exercise for the learner.t

+ The formula for the developement of (z 4 )™ answers for all
values of the exponent m, and is equally applicable to cases in which
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145. We may easily reduce the developement of the power of
any polynemial whatever, to that of the powers of a binomial, as
may be shown with respect to the trinomial a + & + ¢, the third
power for instance being required.

First, we make b 4- ¢ = m, we then obtain
(a4+b+c)=(c+mnP=ac43cm 4 3am® 4 n?;
substituting for m the binomial & + ¢, which it represents, we have
(at+b4c)2=a>+3a>(b+c)+3a(d+c)? + (b+c)3.
It only remains for us to develope the powers of the binomial
b 4-¢, and to perform the multiplications, which are indicated ;

we have then
a®* +3a2b+3ab? 403
+3a%c+ 6abec 4 302 ¢
+38ac?+3bec?
-+ c®.

Of the Extraction of the Roots of Compound Quantities.

146. Havine explained the formation of the powers of com-
pound quantities, I now pass to the extraction of their roots, be-
ginning with the cube root of numbers.

In order to extract the cube root of numbers, we must first be-
come acquainted with the cubes of numbers, consisting of only
one figure; these are given in the second line of the following
table ;

1 2 3 4 5 6 7 8 9

1 8 27 64 125 216 343 512 1729
and the cube of 10 being 1000, no number consisting of three fig-
ures can contain the cube of a number consisting of more than one.

The cube of a number consisting of two figures is formed in a
manner analogous to that, by which we arrive at the square ; for
if we resolve this number into tens and units, designating the first
by a, and the second by b, we have

(a40)*=a*4+3a*b+43ab® +0°.

the exponent is fractional or negative. This property, which is
very important, is demonstrated in a note to the last part of the
Cambridge course of Mathematics on the Differential and Integral

Calculus.
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Hence it is evident, that the cube, or third power, of a number com-
posed of tens and units, contains four parts, namely, the cube of the
tens, three times the square of the tens multiplied by the units, three
times the tens multiplied by the square of the units, and the cube of
the units.

Il it were required to find the third power of 47, by making
a =4 tens or 40, b = 7 units, we have

«® = 64000
3 a2 b = 33600
3ab? = 5880
b = 343
Total, 103823 = 47 x 47 X 417.

Now to go back from the cube 103823 to its root 47, we begin
by observing that 64000, the cube of the 4 tens, contains no sig-
nificant figure inferior to thousands ; in seeking the cube of the tens
therefore, we may neglect the hundreds, the tens, and the units of
the number 103823. Pursuing, therefore, a method similar to that
employed in extracting the square root, we separate, by a comma,
the first three figures on the right; the greatest cube contained
in 103 will be the cube of the tens. It is evi- 103,823 47
dent from the table, that this cube is 64, the 64 | ~ 28
root of which is 4 ; we therefore put 4 in the Gm
place assigned for the root. We then subtract 64 from 103
and by the side of the remainder, 39, bring down the last three
figures. The whole remainder, 39823, contains still three parts
of the cube, namely, three times the square of the tens multiplied
by the units, or 3a® b, three times the tens multiplied by the
square of the units, or 3 @ 62, and the cube of the units, or 53, If
the value of the product 3 a? & were known, we might obtain the
units b, by dividing this product by 3 a2, which is a known quan-
tity, the tens being now found ; but, on the supposition that the
product, 3 a?b, is unknown, we readily perceive, that it can have
no figure inferior to hundreds, since it contains the factor a2, which
represents the square of the tens ; it must, therefore, be found in
the part 398, which remains on the left of the number 39823,
after the tens and units have been separated, and which contains,
besides this product, the hundreds arising from the product, 3 a b2,
of the tens by the square of the units, and from the cube 3, of
the units.
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If we divide 398 by 48, which is triple the square of the tens,
3a? or 3 X 16, we obtain 8 for the quotient; but from what pre-
cedes, it appears that we ought not to adopt this figure for the
units of the root sought, until we have made trial of it, by em-
ploying it in forming the last three parts of the cube, which must
be contained in the remainder 39823. Making b6 =8, we find

3 a? b = 38400
3abz = 17680

b3 = 512

Total, 46592.

As this result exceeds 39823, it is evident that the number 8 is too
great for the units of the root. If we make a similar trial with 7,
we find that it answers to the above conditions ; 47 therefore is the
root sought.

Instead of verifying the last figure of the root in the manner
above described, we may raise the whole number expressed by
the two figures, immediately to a cube; and this last method is
generally preferred to the other. Taking the number 48 and
proceeding thus, we find

48 X 48 X 48 = 110592.
As the result is greater than the proposed number, it is evident,
that the figure 8 is too large.

147. What we have laid down in the above example may be
applied to all cases, where the proposed number consists of more
than three figures and less than seven. Having separated the
first three figures on the right, we seek the greatest cube in the
part which remains on the left, and write its root in the usual
place ; we subtract this cube from the number to which it relates,
and to the remainder bring down the last three figures; sepa-
rating now the tens and the units, we proceed to divide what
remains ou the left, by three times the square of the tens found ;
but before writing down the quotient as a part of the root, we
verify it by raising to the cube the number consisting of the tens
known, together with this figure under trial. 1f the result of
this operation is too great, the figure for the units is to be dimin-
ished ; we then proceed in the same manner with a less figure,
and so on, until a root is found, the cube of which is equal to the
proposed number, or is the greatest contained in this number, if
it does not admit of an exact root. As we have often remainders
that are very considerable, I will here add to what has been said, a
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method, by which it may be soon discovered, whether or not the
unit figure of the root be too small.
The cube of ¢ 4 b, when b = 1, becomes that of @ 4 1,

or a*+4+3a*+3a-41,
a quantity, which exceeds a®, the cube of a, by
3a* 4+ 3a 4 1.

Hence it follows, that whenever the remainder, after the cube root
has been extracted, is less than threc times the square of the root,
plus three times the root, plus unity, this root s not too small.

148. In order to extract the root of 105823817, it may be ob-
served, that whatever be the number of figures in this root, if we
resolve it into units and tens, the cube of the tens cannot enter into
the last three figures on the right, and must consequently be found
in 105823. But the greatest cube contained in 105823 must have
more than one figure for its root ; this root then may be resolved
into units and tens, and, as the cube of the tens has no figure infe-
rior to thousands, it cannot enter into the three last figures 823.
If, after these are separated, there remain more than three figures
on the left, we may repeat the reasoning just employed, and thus,
dividing the number proposed into portions of three figures each,
proceeding from right to left, and observing that the last portion
may contain less than three figures, we come at length to the place
occupied by the cube of the units of the highest order in the root
sought.

Having thus taken the preparatory steps, we seek, by the rule
given in the preceding article, the cube root of the two first por-
tions on the left, and find for the result 47 ; 105,823,817 473
we subtract the cube of this number from the 61 48
two first portions, and to the remainder 2000 ~ 41 8,23 | 6627
bring down the following portion 817. The 103 823
number 2000817 will then contain the last 2 0008;17
three parts of the cube of a number, the tens of 105 823 817
which are 47, and the units remain to be found. 000 000 000
These units are therefore obtained as in the example given in
the preceding article, by separating the last two figures on the
right of the remainder, and dividing the part on the left by 6627,
triple the square of 47. Then making trial with the quotient 3,
arising from this division, by raising 473 to a cube, we obtain for
the result the proposed number, since this number is a perfect
cube.
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The explanation, we have given, of the above example, may
take the place of a general rule. If the number proposed had
contained another portion, we should have continued the operation,
as we have done for the third ; and it is to be recollected always,
that a cipher must be placed in the root, if the number to be divided
on the left of the remainder happen not to contain the number used
as a divisor ; we should then bring down the following portion, and
proceed with it as with the preceding.

149. Since the cube of a fraction 1s found by multiplying this
Jraction by its square, or which amounts to the same thing, by taking
the cube of the numerator and that of the denominator ; reversing
this process, we arrive at the root, by extracting the root of the new
numerator and that of the new denominator. The cube of £, for
example, is 12£; taking the cube root of 125 and of 216, we
find &.

We always proceed in this way, when the numerator and denom-
inator are perfect cubes; but when this is not the case, we may
avoid the necessity of extracting the root of the denominator, by
multiplying the two terms of the proposed fraction by the square of
this denominator. The denominator thence arising, will be the
cube of the original denominator ; and it will be only necessary
then to find the root of the numerator. If we have, for example,
2, by multiplying the two terms of this fraction by 25, the square of

the denominator, we obtain

75
The root of the denominator is 5 ; while that of 75 lies between
4 and 5. Adopting 4, we have ¢ for the cube root of 2 to within
one fifth. If a greater degree of accuracy be required, we must
take the approximate root of 75, by the method 1 shall soon pro-
ceed 1o explain.

If the denominator be already a perfect square, it will only be
necessary to multiply the two terms of the fraction by the square
root of this denominator. Thus in order to find the cube root of &,
we multiply the two terms by 3, the square root of 9; we thus

obtain
12

3 X3 X3
Taking the root of the greatest cube 8, contained in 12, we
have # for the root sought, within one third.
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150. It follows from what has been demonstrated in art. 97.,
that the cube root of a number, which is not a perfect cube, cannot
be expressed exactly by any fraction however great may be the
denominator ; it is therefore an irrational quantity, though not of the
same kind with the square root ; for it is very seldom that one of
them can be expressed by means of the other.

151. We may obtain the approximate cube root by mea s of
vulgar fractions. The mode of proceeding is analogous to that
given for finding the square root (103); but, as it may be readily
conceived, and is besides not the most eligible, I shall not stop to
explain it.

A better method of employing vulgar fractions for this purpose
consists in extracting the root in fractions of a given kind. Thus,
if it were required to find, for example, the cube root of 22, within
a fifth part of unity, observing that the cube of ! is 115, we reduce
22 to 2770 ; then taking the root of 2750, so far as it can be
expressed in whole numbers, we have ', or 2¢, for the approximate
root of 22.

152. It is the practice of most persons, however, in extracting
the cube root of a number, by approximation, to convert this
number into a decimal fraction, but it is 10 be observed, that this
fraction must be either thousandths or millionths, or of some higher
denomination ; because when raised to the third power, tenths
become thousandths, and thousandths millionths, and in general,
the number of decimal figures found in the cube, is triple the number
contained 1n the root. From this it is evident, that we must place
after the proposed number three times as many ciphers, as there
are decimal places required in the root. The root is then to be
extracted according to the rules already given, and the requisite
number of decimal figures to be distinguished in the result.

If we would find, for example, the cube root of 327, within a
hundredth part of unity, we must write six ciphers after this number,
and extract the root of 327000000 according to the usual method.

This is done in the following manner ;
327,000,000 | 688

216 | 108
1110,00 13872
3144 32

"125 680,00
325 660 672
13390 328
Alg. 22
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Separating two figures on the right of the result for decimals,
we have 6,88 ; but 6,89 would be more exact, because the cube of
this last number, although greater than 327, approaches itmore
nearly than that of 6,38.

If the proposed number contain decimals already, before we
proceed to extract the root, we must place on the right as many
ciphers, as will be necessary to render the number of decimal
figures a multiple of 3. Let there be, for example, 0,07, we
must write 0,070, or 70 thousandths, which gives for a root 0,4.
In order to arrive at a root exact to hundredths, we must annex
three additional ciphers, which gives 0,070000. The root of the
greatest cube contained in 70000 being 41, that of 0,07 becomes
0,41, to within a hundredth.

153. Hitherto I have employed the formula for binomial quan-
tities only in the extraction of the square and cube roots of num-
bers ; this formula leads to an analogous process for obtaining
the root of any degree whatever. I shall proceed to explain this
process, after offering some remarks upon the extraction of roots,
the exponent of which is a divisible number.

We may find the fourth root by extracting the square root twice
successively ; for by taking first the square root of a fourth power,
a% for example, we obtain the square, or a? the square root of
which is a, or the quantity sought.

It is obvious also, that the eighth root may be obtained by
extracting the square root three times successively, since the
square root of a® is a% and that of a* is o2 and lastly, that of
a’is a.

In the same manner it may be shown, that all roots of a degree,

designated by any of the numbers 2, 4, 8, 16, 32, &c. that is, by
any power of 2, are obtained by successively extracting the square
root. :
Roots, the exponents of which are not prime numbers, may be
reduced to others of a degree less elevated ; the sixth root, for
example, may be found by extracting the square and afterwards
the cube root.  Thus, if we take «® and go through this process
with it, we find by the first step a3 and by the second a ; we may
also take first the cube root, which gives a% and afterwards the
square root, whence we have a, as before.

154. 1 now proceed to treat of the general method, which I
shall apply to roots of the fifth degree. The illustration will be
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rendered more easy, if we take a particular example; and by
comparing the different steps with the methods given, for the
extraction of the square and the cube root, we shall readily per-
ceive, in what manner we are to proceed in finding roots of any
dcgree whatever.

Let it be required then to extract the fifth root of 231554007.
Now the least number, it may be observed, consisting of 2 figures,
that is 10, has in its fifth power, which is 100000, six figures; we
therefore conclude, that the fifth root of the number proposed
contains at least two figures; this root may then be represented
by a + b, a denoting the tens and b the units. The expression for
the proposed number will then be

(a +0y=a*+5a*b+ 10a® 5 4 &ec.
I have not developed all the terms of this power, because it is
sufficient, as will be seen immediately, that the composition of the
first two be known.

Now it is evident, that as a® or the fifth power of the tens of
this root, can have no figure, that falls below hundreds of thou-
sands, it does not enter-into the last five figures on the right of the
proposed number; we, therefore, separate these five figures.
If there remained more than five figures on the left, we should
repeat the same reasoning, and thus separate the proposed number
into portions of five figures each, proceeding from the right to the
left. The last of these portions on the left, will contain the fifth
power of the units of the highest order found in the root.

We find, by forming the fifth powers of 2315,54007 | 47
numbers consisting of only one figure, that 1024
2315 lies between the fifth power of 4, or 1291 5,4007| 1280
1024, and that of five, or 3125. We take, therefore, 4 for the
tens of the root sought; then subtracting the fifth power of this
number, or 1024, from the first portion of the proposed number,
we have for a remainder 1291. This remainder, together with
the following portion, which is to be brought down, must contain
5a*b 4 10 ¢® b + &c. which is left, after a® has been subtract-
ed from (a 4 5)%; but among these terms, that of the highest
degree is 5 a*b, or five times the fourth power of the tens multi-
plied by the units, because it has no figure, which falls below tens
of thousands. In order to consider this term by itself, we sepa-
rate the last four figures on the right, which make no part of it,
and the number 12915, remaining on the left, will contain this
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term, together with the tens of thousands arising from the suc-
ceeding terms. It is obvious, therefore, that by dividing 12915
by 5 a*, or five times the fourth power of the four tens already
found, we shall only approximate the units. The fourth power
of 4 is 256; five times this gives 1280 if we divide 12915 by
1280, we find 10 for the quotient, but we cannot put more than
9 in the place of the root, and it is even necessary, before we
adopt this, to try whether the whole root 49, which we thus
obtain, will not give a fifth power greater than the proposed
number. We find indeed by pursuing this course, that the num-
ber 49 must be diminished by two units, and that the actual root
is 47, with a remainder 2209000 ; for the fifth power of 47 is
229345007 ; that is, the exact root of the proposed number falls
between 47 and 48. _

If there were another portion still, we should bring it down
and annex it to the remainder, resulting from the subtraction of
the fifth power found as above, from the first two portions, and
proceed with this whole remainder, as we did with the preceding,
and so on.

After what has been said, it will be easy to apply the rules,
which have been given, as well in extricating the square and cube
root of fractions, as in approximating the roots of imperfect powers
of these degrees.

155. We may by processes, founded on the same principles,
extract the roots of literal quantities, The following example
will be sufficient to illustrate the method, which is to be employed,
whatever be the degree of the root required.

We found in art. 143., the sixth power of 2a® — 54%; we
shall now extract the root of this power. The process is as fol-
lows ;

64 2® — 960 a® 2! 4 6000 o 21* — 20000 a®2° |2 2® — 5 o®

4 37500 a!2 25 — 37500 a’® 2% 193 715
1 15625 a®®
—642'8
rem. — 960 a®ax'® 4 &ec.

The quantity proposed being arranged with reference to the
letter x, its first term must be the sixth power of the first term
of the root arranged with reference to the same letter ; taking then
the sixth root of 64 z'8, according to the rule given in art. 129., we
have 2 #® for the first term of the root required.
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If we raise this result to the sixth power, and subtract it from
the proposed quantity, the remainder must necessarily commence
with the second term, produced by the developement of the sixth
power of the first two termns of the root. But, in the expression

(a4 )8 = a5+ 6 a®b 4 e.
this second term is the product of six times the fifth power of the
first term of the root by the second; and if we divide it by 6 a5,
the quotient will be the second term b.

We must, therefore, take six times the fifth power of the first

term 2 a® of the root, which gives |

6 X 322" or 192a'%,
and divide, by this quantity, the term — 960 a®«'5, which is the
first term of the remainder, after the preceding operation; the
quotient — 5 a® is the second term of the root. In order to verify
it, we raise the binomial 2 #® — 5 a3 to the sixth power, which we
find is the proposed quantity itself.

If the quantity were such as to require another term in the root,
we should proceed to find, after the manner above given, a second
remainder, which would begin with six times the product of the
fifth power of the first two terms of the root by the third, and
which consequently being divided by 6 (2 2® — 5 ®)5, the quotient
would be this third term of the root; we should then verify it by
taking the sixth power of the three terms. The same course might
be pursued, whatever number of terms might remain to be found.

Of Equations with Two Terms.

156. EvERY equation, involving only one power of the unknown
quantity, combined with known quantities, may always be reduced
to two terms, one of which is made up of all those which contain
the unknown quantity, united in one expression, and the other
comprehends all the known quantities collected together. This
has been already shown with respect to equations of the second
degree, art. 105., and may be easily proved concerning those of
any degree whatever.

If we have, for example, the equation

a2’ — a® b2 =b4c® +aca’,

by bringing all the terms involving @ into one member, we obtain
a? 2® —acax® = b*c? 4 as b2,

or (a* —ac)x® =b* ¢ 4 a® b2,
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Now if we represent the quantities
a? —ac by p, b*c3+4asb? by g
the preceding equation becomes
pr*=q;
freeing @5 from the quantity, by which it is multiplied, we have
q

5§ -— L .
z° = ’

5——
m=Jg
P

In general, every equation with two terms being reduced to the
form

whence we conclude

pat=gq,
gives

m_—9
X = =3

p )
taking the root then of the degree m of each member, we have

m —
w:Jz
P
157. It must be observed, that if the exponent m is an odd
number, the radical expression will have only one sign, which
will be that of the original quantity (131).
When the exponent m is even, the radical expression will have

the double sign == ; it will in this case be imaginary, if the quan-
tity % is negative, and the question will be absurd, like those of

which we have seen examples in equations of the second de-
gree (131).
See some examples.
The equation % = — 1024,
gives

5
x =4/ — 1024 = — 4,
the exponent 5 being an odd number.

The equation
x* = 625,

4
gives T == /625 = = 5,
as the exponent 4 is even.
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Lastly, the equation
rt = — 16,
which gives

4

& = = /—16,
leads only to imaginary values, because while the exponent 4 is
even, the quantity under the radical sign is negative.

158. I shall here notice an analytical fact, which deserves atten-
tion on account of its utility, as well in the remaining part of the
present treatise, as in the Supplement, and which is sufficiently
remarkable in itself; it is this, that all the expressions ¢ — a,
3 — @3, and in general ™ — a™ (m being any positive
whole number), are exactly divisible by # — a. 'This is obvious
with respect to the first. 'We know that the second

22 — a® = (z + a) (x — a) (34).
and the others may be easily decomposed by division. If we
divide a™ — a™ by @ — a, we obtain for a quotient

a4 aa™ + a® 2™ 4 &,

the exponent of a, in each term, being less by unity than in the
preceding, and that of @ increasing in the same ratio. But instead
of pursuing the operation through its several steps, I shall present
immediately to view the equation

x?—ad? @

m—a™ o m—9 9 - m—3 m—g m—1
praae R 4 aa™= 4 o*x veee a2 4 o™,

which may be verified by multiplying the second member by « — a.
It then becomes
gt aam 4 Pam P +am2 2%} a™ e

—aaml— 22 —afa™ 3, ... ... —a™lg—am;

all the terms in the upper line, after the first, being the same, with
the exception of the signs, as those preceding the last in the lower
line, there only remains after reduction ™ — a™, that is, the divi-
dend proposed.

It must be observed, that the term a® ™2, in the upper line, is
necessarily followed by the term o® x™3, which is destroyed by
the corresponding term in the lower line; and that, in the same
manner we find, in the lower line, before the term ¢™ ', a term
— a™2 2%, which destroys the corresponding one in the upper line.
These terms are not expressed, but are supposed to be compre-
hended in the interval denoted by the points.
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159. This leads to very important consequences, relative to the
equation with two terms a™ = 1
P

If we designate by @ the number, which is obtained Dy directly
extracting the root according to the rules given in ait. 154., we
have

g:a”‘ or a™ = a™;
p
transposing the second member we obtain
™ — a™ = 0.
The quantity ™ — @™ is divisible by ¥ — @, and we have by the
preceding article

" —a™ = (x—a) (™4 a2™ 2. ... + a2 x 4 am 1),
This last result, which vanishes when ¢ = @, is also reduced to
nothing, if we have

=l fgamR ..., + am 22 4 o™ = 0. (116);
and, consequently, if there exists a value of @, which satisfies this
last equation, it will satisfy also the equation proposed.

These values have with unity very simple relations, which may
be discovered by making & = ay; then the equation 2™ — a™ == 0
becomes

ary"—a™* =0, or y*—1=0,
and we obtain the values of x, by multiplying those of y by the
number a.
The equation y™ — 1 = 0, gives in the {irst place

m

=1, y=4 =1;

then by dividing y™ — 1 by y — 1, we have
T B Vi I Y Vo S + ¥+ y41.

Taking this quotient for one of the members, and zero for the
other, we form the equation on which the other values of y de-
pend ; and these values will, in the same manner, satisfy the
equation

Yy —1 =0, or y" =1,
that is, their power of the degree m will be unity.

Hence we infer the fact, singular at first view, that unity may

have many roots beside itself. These roots, though imaginary, are
still of frequent use in analysis. I can, however, exhibit here only
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those of the four first degrees, as it is only for these degrees, that
we can resolve, by preceding observations, the equation
oyt +1=0,
from which they are derived.
(1.) Let m = 2, we have

y*—1 =0,
whence we obtain
y=+4+1, y=—1
(2.) By making m = 3, we have
P—1=0,
whence we deduce
y=1,
then ¥4 y41=0.
This last equation being resolved, gives
— 14+ =3 — 1 — 3
y= —g — Y= ) —
thus we have for this degree the three roots
— 14+ 4—=3 —1—4=3
y =1, y.._————i;—————, y:———-a—————«

The last two are imaginary ; but if we take the cube, forming that
of the numerator, by the rule given in art. 34,, and observing that
the square of 4/ —3 being — 3, its cube is — 3 4/ —3, we still

find 9® == 1, in the same manner as when we employ the root
= 1.
g (8.) Taking m = 4, we have
yt—1 =0,
from which we deduce
y - ]7
then P+ 9y¥+y+1=0

We are not, at present, furnished with the means of resolving this
equation ; but observing that

y—1=+DE-—1
we have successively

P—1=p, ¥+ 1=0,
whence
y=+1, y=—1, y=++v -1 y=—+/ =1

Two of these values only are real; and the other two imaginary.

Alg. 23
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This multiplicity of roots of unity is agreeable to a general law
of equations, according to which any unknown quantity admits of
as many values, as there are units in the exponent denoting the
degree of the equation, by which this unknown quantity is deter-
mined ; and when the question does not admit of so many real
solutions, the number is completed by purely algebraic symbols,
which being subjected to the operations, that are indicated, verify
the equation.

Hence it follows, that there are two kinds of expressions or
values for the roots of numbers ; the first, which we shall term the
arithmetical determination, is the number which is found by the
methods explained in art. 154., and which answers to each particu-
lar case; the second comprehends negative values and imaginary
expressions, which we shall designate by the term algebraic deter-
minations, because they consist merely in the combination of alge-
braic signs.

Of Equations which may be resolved in the same manner as those
of the Second Degree.

160. THEsE are equations, which contain only two different
powers of the unknown quantity, the exponent of one of which is
double that of the other. Their general formula is

?m 4 pam =g,
p and ¢ being known quantities.

Now if we take «™ for the unknown quantity, and make z™ = u,

we have

am =Au2’
whence

w4 pu=ygq,
u=—3ip Eg+1ip® (109);
restoring 2™ in the place of u, we have
o = — ipE NTFIP
an equation consisting of two terms, since the expression
— 3P =N+ i

as it implies only known operations, to be performed on given
quantities, must be regarded as representing known quantities.

Designating the two values of this expression by @ and o/, we

have
a™ = a and 2™ = o,
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from which we obtain

m m
x = 4sgand x = 4/a'.
If the exponent m be even, instead of the two values given
above, we shall have four, since each radical expression may take
the sign == ; then

x=+vz,w=+v;,

m _ m .
T = = 4/ay X = — 4/a/y
and these four values will be real, if the quantities ¢ and o’ are
positive.
All the values of o may be comprehended under one formula,
by indicating directly the root of the two members of the equation

Tt = — 1p = A/g+ 1P
which gives

=N —1p*=ViFir
The following question produces an equation of this kind.
161. To resolve the number 6 into two such factors, that the sum
of their cubes shall be 35.

Let  be one of these factors, the other will be g ; then taking

1
the sum of their cubes «® and —E, we have the equation

24+ 50 =,

which may be reduced to
% 4 216 = 3547,
or 2% — 35 2% = — 216.
If we consider a® as the unknown quantity, we obtain, by the
rule given for equations of the second degree,

# =% & y/(y) — 216
By going through the numerical calculations, which are indi-
cated, we find

(35)2 —_ 12125
VFP—216 = V251 =,
and consequently,
X% = 3F 4 1P = 5 = 29,
w3=3§5_l’9——18= 8,
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whence
3.—-
T = 427 = 3,
3
r =48 =2
The first value gives for the second factor £ or 2, while the second
value presents & or 3 ; we have, therefore, in the one case 3 and
and 2 for the factors sought, and in the other 2 and 3. These
two solutions differ only in the order of the factors of the given
number 6.

162. The equations, we have been considering, are also com-
prehended under the general law given in art. 159. ; for the values

of :l/E, r/E are to be multiplied by the roots of unity belonging to
the degree denoted by the exponent .
Applying what has been said to the equation,
a8 — 35 2% = — 216,
we find the six following roots ;

=1 X 3, r=1X 2,

—1 —c —1 —
p=—ttv=3 5 _=ld+v=3, ,
2 2
—1—4v—=3 —1—4v 3
=YX 8, e =Y X g,

of which the first two only are real.

Calculus of Radical Eapressions.

163. THE great number of cases, in which no exact root can
be found, and the length of the operation necessary for obtaining
it by approximation, have led algebraists to endeavour to perform
immediately upon the quantities subjected to the radical sign, the
fundamental operations, intended to be performed upon their roots.
In this way we simplify the expression as much as possible, and
leave the extracting of the root, which is a more complicated pro-
cess, to be performed last, when the quantities are reduced to the
most simple state, which the nature of the question will allow.

The addition and subtraction of dissimilar radical quantities can
take place only by means of the signs + and —. For example,

the sums
5

3 § 3 3
Ve 4 Ve,  va+ v,
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and the differences
3 5 3 3
va—+va,  va—+/b,
can be expressed only under their present form.
The same cannot be said of the expression

3__ 3 __ 5¢3
4a420 + \/16a3b—adv2aﬁb,

because the radical quantities, of which it is composed, become
similar, when they are reduced to their more simple forms, accord-
ing to the method explained in art. 130. First, we have

3 3 3
A16a30 = 4/8a3.2b or 2a4/2b
3 3

3
V2a8h = 4/d6.26 or  a®y2b;
the quantity, therefore, becomes

3 3 ___ S5a2¢ 3 __
4ay2b + 2a4/T5— " v/
which gives, when reduced,

|4 3 .
Gaz/Q—b—'—)dZ—cv'Qb or (Gd—[)c)gi/gb.

164. With respect to other operations the calculus of radical
quantities depends upon the principle already referred to, namely ;
that a product, consisting of several factors, is raised to any power
by raising each of the factors to this power. So also, by suppress-
ing the radical sign, prefixed to a quantity, we raise this quantity
to the power denoted by the exponent of this sign. For example,

7
+/a raised to the seventh power, is @ simply, since this operation,

7
being the reverse of that which is indicated by the sign 4/7, merely
restores the quantity a to its original state.

According to the principles here laid down, if, for example, in

the expression
7 7

va X /b,
we suppress the radical signs, the result a b will be the seventh
power of the above product ; and taking the seventh root, we find
7
Z/E X &b = :/EZ.
This reasoning, which may be applied to all similar cases, shows,
that in order to multiply two radical expressions of the same degree
together, we must take the product of the quantities under the radi-
cal sign, observing to place 1t under a sign of the same degree.
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We have by this rule
342083 X 7T4/5a3b¢c = 21 /10adbic =
21 a®b® 4/10¢;
Ay B XA ET R =44(@—0) (@) =
40/ at—bt;
5

209 — a3 b® a2 b3 c2 4 b5 ¢
S\ g— X 2z
5
_ R —adbt a? b3 ¢? - b5 2
BRPN P g a2
5
(Qas—bs) b3 c2
= e < e+ w
5.
_ ad b3 2 2 ab — b6
- de a® — b2’
since
at — bt = (a® 4 0?) (a® — b?).

165. As the seventh power of the expressnon

7

%, for example,

vl?
is g, it will be seen, by taking the seventh root of this last result, that
7_ 7 _
Ve _ a
=0
V)

Hence to divide a radical quantity by another of the same degree,
we must take the quotient arising from the division of the quantities
under the radical sign, recollecting to place it under a sign of the
same degree.

We find by this rule, that

\/67_1_2_ -6ab_ 33
V3a — NBa = VU
VE—B _ =P _ ;
~/a+T“\“+b ve—h

5
Va4b I at
T N T AR

Vbs P
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166. It follows from the rule, given in art. 164., for the multi-
plication of radical quantities of the same degree, that to raise a
radical quantity to any power whatever, we have only to raise to
this power the quantity under the radical sign, observing that the

5

result must take the same sign ; thus to raise 4/ab, for example to
the third power is to take the product

5 5 5_
vab X a/ab X 4/ab,
and as the radical signs are all of the same degree, the quantities

to which they belong are to be multiplied together, and the radi-

cal sign to be prefixed to the product, which gives
5 e
/5B
7
In the same manner 4/a? 53 raised to the fourth power, gives

:/W, which may be reduced to
7
aba/ats,
by resolving a8 b' into-a” 87 X a % and taking the root of the fac-
tor a”67 (130).

It may be observed, that when the exponent belonging to the
radical sign is dwisible by that of the power to which the proposed
quantity is to be raised, the operation is performed by dividing the
Jirst exponent by the second. For example,

6 \2 3
(vE) = va,
because & = 3.

6
Indeed /a denotes a quantity, which is six times a factor in a,

3
and the quantity 4/a, which is obtained by dividing 6 by 2, being
only three times a factor in @, is consequently equivalent to the
product of two of the first factors, and is therefore the second

power of one of these factors, or of f/E.

The same reasoning may be applied to all similar cases, as in
the following ‘example ;

12 3 4

(Vtz?—b) = 4/a%b.

167. If we reverse the methods given in the preceding article,
we shall be furnished with rules for extracting the roots of radical
quantities.
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We perceive, by attending to the rule first stated, that if the
exponents of the quantities under the radical sign are divisible by
that of the root required, the operation may be performed as if there
were no radical sign, only it is to be observed, that the result must
be placed under the original sign.

We find, for example, that

3 5o
‘lsvﬁ = ‘ji/& = i/ﬁ.
4 3

3 1 3
N’ Aai B = N’ Vai 8 = \/a b2.

From the second rule given in the preceding article, it is evident,
that the general method for finding the root of radical quantities,
is to multiply the exponent belonging to the radical sign by that of
the root, which is to be extracted.

By this last rule, we find, that

'\, Vat = \/a4
5
In fact 4/a? is a guantity, which is five times a factor in o

5
(24, 129) ; but the cube root of /43, being also three times a fac-
tor in this last quantity, is foun(l 5 x 3 times or 15 times a factor

in the first a*; therefore N’ Vel = \/E. 1o the same manner it
15

might be shown, that \/ Vai = /ot

168. Since by multiplying the exponent of a quantity under a
radical sign, by any number (166), we raise the root which is indi-
cated, to the power denoted by this number, and by multiplying
also the exponent belonging to the radical sign, by the same num-
ber (167), we obtain for the result a root of a degree equal to that
of the power which was before formed, it is evident, that this
second operation reduces the proposed quantity back to its original
state.

5 3

The expression, 4/a3, for example, may be changed into 4/a21,
by multiplying the exponents 5 and 3 by 7; for multiplying the
exponent of a3 by 7, we have, making use of the radical sign,

5 -
»/a?, the seventh power of the proposed radical quantity, and
multiplying by 7 the exponent 5 belonging to the radical sign in
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the expression i/ﬁ, we obtain the seventh root of the former
result ; this last process, therefore, restores the expression to its
original value.

169. By this double operation, we reduce to the same degree any
number of radical quantities of different degrees, by multiplying, at
the same time, the exponent belonging to each radical sign, and those
of the quantities under this sign, by the product of the exponents
belonging to all the other radical signs. 'That the new exponents,
which are thus found for the radical signs, are the same, is obvious
at once, since they arise from the product of all the exponents
belonging to the original radical signs; and after what has been
said above, it is evident that the value of each radical quantity is
the same as before.

By this rule we transform

5 7
A/a3 b2 and 4/ct d3,
35 35
into Va@2ipiA  and  4/c%0 g,

In the same manner, the three quantities,
3

5 7
Val?, Va@d, VS,
become respectively
05 105 105
\/TBBD,  o/faiZ 83, /b0 A5,

If we meet with numbers, under the radical signs, we shall be
led, in applying this rule, to raise them to the power denoted by
the product of the exponents belonging to the other radical signs.

170. In the same way, we may place under a radical sign a
factor which is without one, by razsmg it to the power denoted by
the exponent which accompanies this sign.

We may change, for example,

5 3 3
a® into 4/a®, and 2 a 4/ into 4/8a35.

171. After having, by the transformation explained above,
reduced any radical quantities whatever, to the same degree, we
may apply to them the rules, given in articles 164. and 165. for
the multiplication and division of radical quantities of the same
degree.

Let there be the general expressions

@b X b
Alg. 24
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we change (169)
N b, Nbe,

into
mn mn

vanp bre , mer ms

then by the rule given in art. 164. we have

mn mn mn .
Vanp bnq X vbmr P — Vanp bnq+m7' cms,
for the product of the proposed radical quantities.
We have also by the rule, art. 165.

m

~/al’ b'] Va"l’ b _ a’"l’ b Ja"? bnq —mr

- fmr oms

Ve ~/b’"’c""

Remarks on some peculiar cases, which occur in the Calculus of
Radical Quantities.

172. THE rules to which we have reduced the calculus of
radical quantities, may be applied without difficulty, when the
quantities employed are real. But they might lead the learner
into error with regard to imaginary quantities, if they are not
accompanied with some remarks upon the properties of equations
with two terms.

For example, the rule laid down in art. 164. gives directly

VoE X A= e X e =
and if we take 4 @ for 4/a2, we evidently come to an erroneous
result, for the product o X 4/ —a, being the square of
v/ —a, must be obtained by suppressing the radical sign, and is
therefore equal to — a.

Bézout has obviated this difficulty, by observing, that when we
do not know by what method the square e® has been formed, we
must assign for its root both 4- @ and — a ; but when, by means
of steps already taken, we know which of these two quantities
muliiplied by itself produced a® we are not allowed, in going back
to the root, to take the other quantity. This is evidently the case
with respect to the expression o/ —a X 4/ —a ; here we know,
that the quantity a2, contained under the radical sign in the expres-
sion 4/a% arises from — a multiplied by — a; the ambiguity,
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therefore, is prevented, and it will be readily seen, that in taking
the root, we are limited to — a.

The difficulty above mentioned would present itself in regard to
the product /& X 4/, if we were not led, by the circumstance of
there being no negative sign in the expression, to take immediately
the positive value of 4/g2. In this case, since o® arises from + a
multiplied by -+ @, its root must necessarily be + a.

There can be no doubt with respect to examples of the kind we
have been considering ; but there are cases, which can be clearly
explained only by attending to the properties of equations with two
terms.

173. If, for example, it were required to find the product
4
&/a 4/ —1; reducing the second of these radical expressions to the

same degree with the first (169), we have

4_ 4 4_ 4__ 4_
va X V(=12 = vae X &/ + 1=+,

a result which is real, although it appears evident, that the quantity

4

&’z multiplied by the imaginary quantity 4/ —1, ought to give an

imaginary product. It must not be supposed, however, that the

4
expression 4/a is in all respects false, but only that it is to be taken
in a very peculiar sense.

4
In fact, 4/a, considered algebraically, being the expression for
the unknown quantity @, in the equation with two terms,
at —a = 0,

admits of four different values (159) ; for if we make ¢ = o, by

taking « to represent the numerical value of :/E, considered inde-
pendently of its sign, or the arithmetical determination of this quan-
tity, we have the four values

e X 41, a X —1, «a X +4/ =1, « X —4¢—1,
the third of which is precisely the product proposed.

By a little attention, it will be readily perceived, whence the
ambiguity, of which we have been speaking, arises. The second
power - 1 of the quantity — 1 under the radical sign, as it may
arise as well from 4+ 1 X 4 1, as from — 1 X — 1, causes the

4
quantity /1 to have two values, which are not found in /=T,

In general, the process by which the product :./E X b is
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formed, is reduced to that of raisingthis product to the power
mn ; for if we represent it by z, that is, if we make

m_ n_

Va X /b = 2,
by raising the two members of this equation, first to the power m,
we have

n_—
a \/bm = 2™,
again, raising it to the power n, we obtain
aﬂ bm — zmn.
This product, therefore, being determined only by means of its

power of the degree mm, or by an equation of this degree with
two terms, must have mn values (159). This will be perceived

at once, if we reflect that the expressions mv:; and 1/17, being noth-
ing but the values of the unknown quantities @ and 7, in the equa-
tions with two terms, 4
™ —a=0, y» —b =0,

and, consequently, admitting of m and of » determinations, we
have, by uniting the several m determinations of x, with the sev-
eral n determinations of y, mn determinations of the product
required. ‘

When we are employed upon real quantities, there is no diffi-
culty in finding the values, because the number of those, that are
real, is never more than two (157), which differ only in the sign.

174. If we use the transformation explained in art. 159., the
difficulty will be confined to the roots of 4 1 and — 1 ; for if we
make 2 = o ¢ and y = S %, ¢ and § denoting the numerical values

Cm on
of 4/a, 4/6 considered without regard to the sign, the equations
" Fae=0 Yy Fb=0,
become
tmxE1=0, ' F+1=0,
whence

vy=o/FaX o/ Eb =aftu=afsy/ E1 X &/ E1;

m n
in which « g represents the product of the numbers 4/a, 4/5, or the
arithmetical determination of the root of the degree mn of the
nuinber a® ™,
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If we would give a determinate value to the product of the

m n
radical quantities 4/ == a, 4/ == b, by fixing the degree of the radi-
cal signs, we must obtain from the equations

"xE=1=0, w*xFx1=0,

m n
the several expressions for 4/ &= 1, 4/ == 1, and combine them in a
suitable manner.

To conclude, these operations are not often required, except in
some very simple cases, of which the following are the principal ;
(1) V=a X v/ —=bt=+va X b (V=1 X+v—1);
I suppress the radical sign in the expression 4/"— 1, and obtain
V—aXNV=b=4ab X —1=—4/ab.
4

4 4 4
2.) vV—aX & =b=40b(vV=1)7;
I do not here multiply — 1 by — 1, because this would lead to
the ambiguity mentioned in art. 173.; but observing, that the
square of the fourth root is simply the square root, we have

. 4

4 4
V—a X V= =40ab X vV=1.
6_ 6 6 [— 6 3
(B) v—aX vV —b=+0ab X (V=12 =+0ab X4y —1

6 6
=+yab X — 1 = —/ab.
The results will be thus found to be alternately real and imaginary.

Calculus of Fractional Exponents.

. 175. Ir we substitute in the place of the radical signs, their
corresponding fractional exponents (132), and apply immediately
the rules for the exponents, we shall obtain the same results, as
those furnished by the methods employed in the calculus of radical
quantities.

If we transform, for example,

5 5
v/ adb2 4/ adc2
into

we Bave

ey
e

3 2
a® b°, a® ¢?,

3
5

5 5 3.2 3
VBT X /a3 =a’b® X afc
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then, since ¢ = 1 - 1, and, consequently,
1 1
F=d Ti=uxd (25),

1.3 2, . 5
and a® b% ¢® is equivalent to 4/ab®¢2, we have
5 . 5 5
Vadh X 4/ a3 = a4/ abc?,
a result which is not only exact, but is reduced to its most simple
form.

m n
Let there be the general example 4/a?b? X 4/b7¢*; the radi-
cal expressions here employed may be transformed into
L | L3
amb™, b ¢,
we then have, according to the rules for exponents, (25),
r 49 r s p q r s
am b X b G o= gm T G,

. . r
Now in order to add the fractions 7%—, ~; We must reduce them to

the same denominator; and to give uniformity to the results, we

s .
P —; we obtain

must do the same with respect to the fractions i

by this means,
np ngfmr ms

mn mn 7’7-
a™p g

and placing this result under the radical sign, we have

V@ X T ¢ = g/ am et gme,
176. The manner of performing division is equally simple, we
have for example

N ‘
—=73 3.3 2
NP asbe be
5 "'51:4_31 (38)>
Ve et e F¢d
which may be reduced to
2
bs
5 .
at ¢ o

this placed under the radical sign becomes
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We have in general,

m__ r 4 r g__ 7
A/ bt amb™  gmb™ ot
D T S
40 ¢ b ¢ c*

reducing the fractional exponents to the same denominator, in
order to perform the subtraction, which is required, we find

np  ng—mr mn
V oF b1 amn b mn Janp brg—mr
~/ b'r cmn

It is obvious, that the reduction of fractional exponents to the
same denominator, answers here to the reduction of radical ex-
pressions to the same degree, and leads to precisely the same
results (171).

177. It is also very evident, by the rule given in art. 127., that

m__\n \n np m
(Vo) = (@) = =y,
and by the rule laid down in art. 129., that

n

m ] 2. mn
JVaP = o™ = a™ = Vap

The calculus of fractional exponents affords one of the most
remarkable examples of the utility of signs, when well chosen.
The analogy which prevails among exponents, both fractional and
entire, renders the rules, that are to be followed with respect to the
latter, applicable also to the former ; but a particular investigation
is necessary in each case, when we use the sign 4/, because it
has no connexion with the operation that is indicated. The fur-
ther we advance in algebra, the more fully shall we be convinced
of the numerous advantages, which arise from the notation by
exponents, introduced by Descartes.

Ezamples in the Formation of Powers of Compound Algebraic
Ezpressions.
1. (0 — b = a3 — 3a®b 4 3a b — B2,
2. (4—30)* = 64 — 144b 4 1086 — 27 b%.
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3. (5—4x)* = 625— 2000z 4 2400 2® — 1280 23+ 256a*.
4. (® + 3abd) = a® 4 12ab | 54 a®b2 4 108 af b®
+ 81 a4 Bt
5. (50 d'—4abd?)* = 625 a8 8 d* — 2000 a’ b S d°
- 2400 a8 5% c* df — 1280 a%8% 2 d7 4~ 256 a* b* d°.
6. (3ac—2bd)" =243a5c>—810a%c*bd 4 1080 a3 342 d®
— 720a2c® b3 d3 4 240 a ¢ b* d* — 32 b5 d°.
7. (Wa++b)=a*+ 6ab 40>+ (4a4 4b) vad.
8. (a+b+c=0a*4+3a>b 4 3a®c 4 3ab®+ 6abe
+3a® 4+ +30Pc43b2 4 .
c(@a4+2b+cP=0a*+6a’b+3a?c+ 12ab2 4 12abe
+3a®+868 4 128%¢c +6b¢* 3
10 (@a+b+4c+d?=0a>+2ab+ 2ac+ 2ad 4 ¥*
4 2bc42bd 4 42cd 4 -
11. (a £0)" = a”:h’lla"‘lbl+ 7-'—%"—;:—? ™2 b?

<]

n(n—1)(n—2)
+ TX2X3 a3 5 4,

12. Maken = Ln=1}, n=% n=23,.....

Ezamples in the Extraction of the Cube Roots of Numbers.

1. 3/1'2_)'67 = 23. /. /-
2. :/8_84_733 = 96. ’ '_/;/,/ :
3. /TI9T0T6 = 106. '
4. 3/24_’60377‘5 = 135.
5. vIZ = 228042 ....
6. V58 = 1.79670. ...
TF =4
3 —_
. Vi =31
9 vi — 0.87358 . . ..
10. vi = 0.94103 ... . -+ A
3

1l 3% =1.56049....
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Examples in the Extraction of the Cube Roots of Algebraie

Ezpressions.

3
1. v (624 2 4-8 + 122) = 2 + 2.
3
2. v/ (29422 —84a>2+48ad®*—3432%) =2a— 7.
3
3. v (a®—6cad+ 122 a* —8c%ad) =a? —2ca.

3
4. v(a3"—6a2"' Lgn + 12 am+2x2"—8a3x3")
=a”—2aax™

J(aaC3 3a c 5+3ab 4 gﬁ):‘—lg:ﬁ—kw-
P c

3ab o 3ab at
6- J(b3+ O 5 3 + 464 4+8—é§w 6)

=b+ gt =b+ 50

7 P2 DYES

7. J(a3+3a9b+3a20+‘3ab2+6abc+ 3act 4+ b
+3W8c+3be*+F)=a+4 b4

3
8. v/ (2725 — 54 a2° 4 63 0 2* — 44 a®2° 4 21 o* 2?
—6a’z4a%) =32°—2az4 a®

3
9. 4/ (8 a® 4 48 ¢ 2® 4 60 ¢* a* — 80 ¢ 2® — 90 c* 2®
+ 1082 —27¢f) =224 4cax—3A
(P —d) =g P 2T T
10. v (@8 — o) = a 8a> 9a5 Bla® 248q11~ "'

3 23 529 10 212
. v(@®+2) =a+ 55— 9a5+81a3 23 T

3 x a2 523 1024
12. v (1 —2) =1—§—§——8_1——243 — e
3 z 523 1024
lS.v(l+w)=1+3 9+81 2434— .....

Ezamples in the Multiplication of Radical Expressions.

l..’b VJ X CVz = abcv‘z_/;.

2. v4 X 7 V6 X 3 vs V—QT)
Alg. 25



104 Elements of Algebra.

[ 6
8.4 X 243X 72 =846.
4. 543 X T3I X 48 = 140.
5. c/a X dya=uacd.
_ 3 4_ 12

6. v2 X 43 X 4/5 = 4/648000.

3_ 6_ 8 4
7. &2 X 41 X /3 = 4258,
12 8 pZ3

a am™ __ adm+2
e J5 =5

3 6 6

ac bed bi0de 1 a4 ¢3
" B3 e XJagcf’—m die’
10. (/542 /7 +34/10) X 245 = 10+ 4 /354 64/50.
11. (3 +4/5) X (2—+3) =1 — /5.
12. (T 4+ 246) X (9—548) = 3 — 17 4/8.
13. (—5—wvi) X (=5 +vi) =245
14. (9 + 2 v10) X (9 — 2 4/T0) = 41.
15. (248 + 345 —T7T43) X (W72 —5 430 —24/3)

= — 174 + 42 y/10.

w

©

3 3_ 3 _ 3 __ 3 3

16. (45— 24/6) X (834/4—4/36) =12 4+ 3 /20— 642
3
— +/180.
=3 3_ _ 3_ 3

17. 2v3+4v2) X 2+ 49) =443+ 242447184 64/3.
18. (va— %) X (va +vb) = a—b.
19. (cova 4 db) X (cava—d b)) =ac®—bd

20. (J“c_‘f+J2f) x (\/az+yza) :“_cd+ ab
() I
4 4 4 4

2L (va + b+ ve) =va+ vE+ ve+ 2vad

4 4
4 2+vac + 24/0b¢

.Ewamples in the Division of Radical Empres.ﬁ“

| \

@Lﬁl

m
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16.
17.

18.
19.

20.

. 2ab263—4\/a3bcsd~HJ d’
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3
b5 ¢4

5

.\/aﬂbc—vabgcﬂ— bc“

4vT2—'-2v5 =2v’§5-

. ca/(a@—122) 4/ (a + .2?) =ca'(a—2z).

V(@b —bc) =/ (a—c)=1b.
(VRFVR—4)+y8 =5—y3.

c(VB+4VIB—3—843) 43 =42 +4y6—43

—8yi.

c(2¢32+3va+4) 4B =1 4 142
10.
11.
12.
13.
14.
15.

1+ (v342) =2—43.

3= (1 +42)=342—3.

(I +vE)+@—va) =2+24a
(5—743)— (1 4 43) =643—13.
(6—345)+(v5—1)=145—¢.
(W34 +v2) = (v3—42) =54+ 24/8.

30 2 3
I+ (Va+vE—vE) = Yo 4 V2 V3
T+ (vI0 — 42— 43) = 35410 + 77 42 + 63 4/3
+ 14 +/60.

@—=3) =+ V2+V3)=14354v2—1v3—2yb.

- - bva— ac
Va+(b+VC)= ;/bag___—c\/:t_c.

(va+ ) + (va— i) »

a—]—l)—i—Q\/ab—l—Q\/(ﬁb-’—Q\/tzlﬁ
= a—b

L ;
Examples in the Calculus of Fractional Exponents,

(a) Multiplication. * K
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— 3 — — 13 1
3. a ixa L) L 3
aA/ab
12
—3,—2 501 i3 te
4. a *b X a® b ¢ = a'%b 2= palbF
q
_ !_z 3 2 367 106
5. Va12 X Va3 X V 5 oqT g% — 795 — g3 o/ o

(cﬂ—y9)3xJ(2—y) —(CQ—yQ)%%(a-{—x)_%%

(¢ + =2)8 a+z
60
@ — P J(a_}_m)m
= erE— P
4
03 JE— 11 3 1
7%)(\3/%)({/—?:1)0 ;Xa“c"Xczb 1
12
—a " tabcii=, [
e

B (VA 4 V) X (ViA—vB) = (af + ) x (aF — )

3

= 3—65 “—a\/a—-\/b‘i

(6) Division.

I P —_m_ 2 __ matnp
l.a *»=—at=a * 1 =a "o,
— 1z
3 5 ca c
2. ca* —da® = 7 =—5
da
1 2 4
1,—1 a a? ¢ __
3 X _ R _ @l
. (3
—_9 2 —29 60
a 73 a8 dl?T ab2c b1 d2
4, —_— — J
1 3 d" a5 c10
c® d3 b5 ¢

a3b? ¢ 24 1»
= Tar J 3 ¢2 X v
®

4 6 12
5. (M 2 aTH — o v + 2b \F) —

= aF — 2% —gu a 22 T
6. (:,;5___%3) ‘?-(:/c—t—:/l?)z o’ + at #
4
+*/Evﬂ.

L XY
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(c) Powers of Powers.

1 (a’?) 191.: p L—:a_z%z Ml
Ny v
m L 1 mp ng
2. (a—”)—q =7, 1 7= aE:Va—"-'P.
(:/ﬁ)

i~N
N
153
»
7]
(ST
o
w»js
~—
Ll
l
%
S

(@ﬂ) %~J3

6
6. V(a3b Va3b c)5== a®b y/c.

6
(5L )7F = et

-+ 0

: J (a‘/b = e, ¢
Jab

General Theory of Equations.

o

X

@

178. EquaTions of the first and second degree are, properly
speaking, the only ones, which admit of a complete solution ; but
there are general properties of equations of whatever degree, by
which we are able to solve them, when they are numerical, and
which lead to many conclusions, of use in the higher parts of
algebra. These properties relate to the particular form, which
every equation is capable of assuming.

An equation in its most general form must contain all the powers
of the unknown quantity, from that of the degree of the equation to
the first degree, multiplied each by some known quantity, together
with one term wholly known.

A general equation of the fifth degree, for example, contains all
the powers of the unknown quantity, from the first to the fifth;
and if there are several terms involving the same power of the
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unknown quantity, we must suppose them to be united in one
according to the method given for equations of the second degree,
art. 108. All the terms of the equation are then to be brought -
into one member, as in the article above referred to; the other
member will necessarily be zero ; and when the first term is nega-
tive, it is rendered positive by changing the signs of all the terms
of the equation,
In this way we obtain an expression similar to the following ;
na® 4 pat 4 qa? - ra* +sax 4 ¢t =0,

in which it is to be observed, that the letters =, p, ¢, r, s, t, may
represent negative as well as positive numbers ; then dividing the
whole by #, in order that the first term may have only unity for its
coefficient, and making

we have

24+ Pa*+ Qa® + Ra* + Sa+ T = 0.

In future, I shall suppose, that equations have always been pre-
pared as above, and shall represent the general equation of any
degree whatever by

a4+ Pat 4 Qa2 . ....4+Ta+ U=0.
The interval denoted by the pofts may be filled up, when the
exponent n takes a determinate value.

Every quantity or expression, whether real or imaginary, which,
put in the place of the unknown quantity  in an equation prepared
as above, renders the first member equal to zero, and which con-
sequently satisfies the question, is called the root of the proposed
equatton ; but as the inquiry does not at present relate to powers,
this acceptation of the term root is more general, than that, in
which it has hitherto been used (90, 129).

179. Take a proposition analogous to those given in articles
116 and 159, and one which may be regarded as fundamental,

If the root of any equation whatever,

x4 Px14Qx2..... +Tx4+U=o,
be represented by a, the first member of this equation may be exactly
dwided by x — a.
Indeed, since a is one value of x, we have necessarily,

a* 4+ Pa—!' Qa2 ..... + Tae+ U=0,
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and, consequently,
U=—a—Pa'—Qa*.....—Ta,
so that the equation proposed is precisely the same as
a* 4 Pa1 4 Qa2 .. ...+ Tx}zo
—a"—Po ! — Qe2.....—Ta ’
which may be reduced to

It — qt + P (ac""l ___an—l) + Q (xn—Q —_ an—2) § —o.

M EE)
As the quantities

Zt —a”, v — @t R — g2 L —,

are each divisible by « — a (158), it is evident, that the first
member of the proposed equation is made up of terms, all of which
are divisible by this quantity, and may consequently be divided by
@ — a, as the enunciation of the proposition requires.*

180. To form the quotient we have only to substitute for the
quantities

at — g, "t — vl g2, Lo — g,

the quotients, which are obtained by dividing these quantities by
& — a, and which are respectively

S S pp - ———

* D’Alembert has proved the same proposition in the following
manner.

If we conceive the first member of the proposed equation to be
divided by z — @, and the operation continued until all the terms
involving z are exhausted, the remainder, if there be any, cannot con-
tain 2. If we represent this remainder by K, and the quotient to
which we arrive by Q, we have necessarily

4 Pe1. . ...+ &c. = Q (rt —a) 4 R.

Now if we substitute @ in the place of z, the first member is reduced
to nothing, since a is the value of z; the term Q (z — ay is also
nothing, because the factor £ — a becomes zero; we must, therefore,
have R = 0, and it is so, independently of the substitution of a; for,
as this remainder does not contain z, the substitution cannot take
place, and it still preserves the value it had before.

Hence it follows, that in every case, R = 0, and that, consequently,

2% 4 P a1 4 Q272 &e.
is exactly divisible by z — a.
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.......

a3 ... 4 av 3

--------------

+ 1.
Arranging the result with reference to the powers of #, we have
a4 aa™? 4+ a2av3..... + o,
+ Pav2 4 Paa™3..... 4 Pa2,
+ Qa3 ..... + Qa3
+ T

181. It is evident from the rules of division simply, that if the

first member of the equation,
a® 4 Pa™! 4 Qa™ ® 4 &c. = 0,
be divided by # — a, the quotient obtained will be exhibited under
the following form,
a1l 4 Pran=? + @ a2 4 &c.

P, @, &c. representing known quantities different from P, @, &c.
we have then

a* 4+ Pnv! 4 &c. = (x — a) (2! 4 Pra™? 4 &e.);
and according to what was observed in art. 116., the proposed
equation may be verified in two ways, namely, by making

2—a=0, or av! 4 Pagv" 4 &c. = 0.
Now if the equation
vl o P a™? - &c. =0

has a root b, its first member will be divisible by « — b ; we have
then

vl 4 P an? 4 Qe = (@ —b) (a™2 4 P 2™ - &c.),
and, consequently,
a® 4+ Pa*! 4 &e. = (2 —a) (@ —b) (a"2 4 P 2" 34 &e.) 5
the equation proposed may, therefore, be verified in three ways,
namely, by making

2—a =0, ora—b =0, or a2 4 P’ 2" } &c. = 0.

If the last of these equations has a root, ¢, its first member may
still be decomposed into two factors,

) & — ¢y %3 4 P gt - e, = 0;
we then have
" 4 P a™! 4 &ec.
= (2—a) (r—0b) (z — c) (a»3 4 P a4 4 &c.);
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from which it is obvious, that the proposed equation may be veri-
fied in four ways, namely, by making
x—a=0,e—b=0,20 —c=0, a"3 4 P g"* 4 &c. = 0.

Pursuing the same reasoning, we obtain successively factors of
the degrees

n—4, n—5, n— 6, &c.;
and if each of these factors, being put equal to zero, is susceptible
of a root, the first member of the proposed equation is reduced to
the form
(z—a)y(x—0)(z—c)(@—d).....(x—1);

that is, it is decomposed into as many facto s of the first degree,
as there are units in the exponent #, which denotes the degree of
the equation.

The equation

a4 Pa™ 1t 4 &e. = 0,

may be verified in n ways ; namely, by making
2—a=0,0ore—b=0,0rz—c=0,orx—d =0,
or lastly, z—1=0.

It is necessary to observe, that these equations are to be regard-
ed as true only when taken one after the other, and there arise
manifest contradictions from the supposition, that they are true at
the same time. In fact, from the equation # — @ = 0, we obtain
x == a, while @ — b = 0 gives # = b, results, which are incon-
sistent, when @ and 0 are unequal quantities.

182. If the first member of the proposed equation,
a® 4 Pa™! 4 &c. = 0,
be decomposed into 7 factors of the first degree,
2—a,e—be—c¢, e —dy.....0—]1
it cannot be divided by any other expression of this degree.
Indeed, if it were possible to divide it by a binomial 2 — «, differ-
ent from the former ones, we should have
ar 4 Par! 4 &c. = (2 — o) (2" 4 pa™2 4 &ec.)
and, consequently,
(z—a)(z—0)(x —¢c)(x—4d)..... (x —1)
= (2 — o) (2" + par?4 &c.);
now by changing « into e, this becomes

Alg. 26
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(60— a) («—208) (ei—¢c) (e —d).....(e—1)

= (a —a) ("t 4 p o 4 &Lc.) H
The second member vanishes by means of the factor « — «, which
is nothing ; this is not the case with respect to the first, which is
the product of factors, all of which are different from zero, so long
as o differs from the several roots @, b, ¢, d .. .l. The suppo-
sition we have made then is not true ; therefore, an equation of
any degree whatever does not admit of more binomial divisors of
the first degree, than there are unils in the exponent denoting its
degree, and consequently cannot have a greater number of roots.*

183. An equation regarded as the product of a number of

factors,

x—a, x —b, x—¢, x —d, &ec.,

equal to the exponent of its degree, may take the form of the pro-
duct exhibited in art. 135., with this modification, that the terms
will be alternately positive and negative.
If we take four factors, for example, we have
at—aa® +aba® —abcr+abcd=0
— bt aca®—abda
—cx®* ada® —acdx
—da® +bca® —bcedu
+ bda®
+ cda?

The second terms of the binomials x — a, 2 — b, ¥ — ¢, &ec.
being the roots of the equation, taken with the contrary sign, the
properties enumerated in art. 135., and proved generally in art.
136., will, in the present case, be as follows,

The coefficient of the second term, taken with the contrary sign,
will be the sum of the roots ;

The coefficient of the third term will be the sum of the products of
the roots, taken two and two ;

The coefficient of the fourth term, taken with the contrary sign,
will be the sum of the products of the roots, multiplied three and
three, and so on, the signs of the coeflicients of the even terms
being changed ;

* This demonstration is taken from the Annales de Mathématiques
published by M. Gergonne. See vol. iv, pp. 209, 210, note.
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The last term, subject also to this law, will be the product of all
the roots. ‘
Making, for example, the product of the three factors

x—5, ¢4 4, x 4 3,
equal to zero, we form the equation
23 4 22 — 222 — 60 = 0,
the roots of which are
+ 5, — 4, —3 5
we have for their sum
5—4—3=—2;
for the sum of their products, taken two and two, .
+5X—445X—3—4X—3=—20—15+412=—23,
and for the product of the three roots,
+5X —4 X —3 =60.
In this way we form the coefficients, 2 — 23, — 60, changing the
signs of those for the second and fourth terms.
If we make the product of the factors
x—2, x— 3, and x + 5,
equal to zero, the equation thence arising
2 — 192 4 30 = 0,

as it has no term involving 2%, the power immediately ioferior to
that of the first term, wants the second term; and the reason is,
that the sum of the roots, which, taken with the contrary sign,
forms the coefficient of this term, is here

2 4 3—35,
or zero, or in other words, the sum of the positive roots is equal to
that of the negative.*

184. We have proved (182), that an equation, considered as
arising from the product of several simple factors, or factors of the
first degree, can contain only as many of these factors, as there
are units in the exponent n denoting the degree of this equation ;
but if we combine these factors two and two, we form quantities of
the second degree, which will also be factors of the proposed
equation, the number of which will be expressed by

n(n—1)

T (140).

* See note at the end of this treatise.



204 Elements of Algebra.

For example, the first member of the equation
2t —aa® 4 aba*—abcx 4+ abecd =0
—ba* 4 aca®—abda
—ca® 4 ada®—acda
—dad+bca®—becda
T4 bda?
+ cda?
being the product of
(z—a) X (2—10) X (z—¢) X (z —d),
may be decomposed into factors of the second degree, in the six
following ways ;
(z —a) (z —0) X (x —c¢) (x —d)
(z—a) (z—¢) X (a—0) (z —d)
(z—a) (z—d) X (@ —0b) (x —¢)
(@—1b) (e — ) X (2 —a) (v — d)
(e—b) (@—d) X (&—a) (e — c)
(z—¢) (z—d) X (x —a) (x —10);
whence it appears, that an equation of the fourth degree may have
six divisors of the second.

By combining the simple factors three and three, we form quan-
tities of the third degree for divisors of the proposed equation ;
for an equation of the degree n the number will be

nin—1) (r—2)
1.2.3
and so on.

Of Elimination among Equations exceeding the First Degree.

185. THE rule given in art. 78., or the method pointed out in
art. 84., is sufficient in all cases, for eliminating in two equations
an unknown quantity, which does not exceed the first degree,
whatever may be the degree of the others; and the rule of art. 78.
is applicable, even when the unknown quantity is of the first degree
in only one of the proposed equations.

If we have, for example, the equations

ax® +bay 4 cy® = m?
2 4 ay = n?
taking, in the second, the value of y, which will be
n? — 22

y = p
Y z
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and substituting this value and its square, in the place of y and y?
in the first equation, we obtain a result involving only .

186. If both of the preposed equations involved the [second
power of each of the two unknown quantities, the above method
could be applied in resolving only one of the equations, either with
respect to x or y.

Let there be, for example, the equations

a4 bay ey =m?
2?4 oy =0
the second gives
Y = == 4/n2 — 2.
Substituting this value of ¥, and its square in the first, we obtain
ax®£brn? 2% 4 ¢ (n®—a®) = m?

Our purpose appears to be answered, since we! have arrived at a
result, which does not involve the unknown quantity y, but we are
unable to resolve the equation containing x, without reducing it to a
rational form, by making the radical sign, under which the unknown
quantity is found, to disappear.

It will be readily scen, that if this radical expression stood
alone in one member, we might make the radical sign to disappear
by raising this member to a square. Collecting together all the
rational terms then in one member, by transposing the terms
=4 b x 4/n2—z2 and m?, we have

ax® 4 c(n? —a?) —m? = bayn2—23;
taking the square of each member we form the equation

atxt4-c?(n?—a?)?4-m* . .
-{-Qacwz_}znﬂ(-—arz) —) 2—11-71&2»1:2-207712(112——@'2) § =bw? (n*—g2),
which contains no radical expression.

The method, we have just employed for making the radical sign
to disappear, deserves atteution, on account of the frequent occasion
we have to apply it; it consists in wnsulating the quantity found
under the radical sign, and then raising the two members of the
proposed equation to the power denoted by the degree of this sign.

187. The complicated nature of this process, which increases
in proportion to the number of radical cxpressions, added to the
difficulty of resolving one of the proposed equations with refer-
ence to one of the unknown quantities, a difficulty, which is often
insurmountable in the present state of algebra, has led those, who
have cultivated this science, to seck a method of effecting the
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elimination without this; so that the resolution of the equations
shall be the last of the operations required for the solution of the
problem.

In order to render the operation more simple, we reduce equa-
tions with two unknown quantities to the form of equations with
only one, by presenting only that, which we wish to eliminate.
If we have, for example,

22 faxytba=cy* 4dy+e,

we bring all the terms into one member, and arrange them with
reference to x ; the equation then becomes

@* +(ay+b)e—cy’ —dy—e=0;
abridging this, by making

ay+b=P, —cy*—dy—e=Q,
we have
2?4+ Px+ Q@ =0.

The general equation of the degree m with two unknown
quantities must contain all the powers of  and y, which do not
exceed this degree, as well as those products, in which the sum of
the exponents of « and y does not exceed m ; this equation then
may be represented thus ;

w’"+ (a+ by)m’"“+(c+dy+ej ) "“2+(f+gy+hy +ky )r"‘“"
+(p+9y+ry +w’"‘1)w+p+ qy+7“y +vy —0

No coefficient is assigned to ™ in this equallon, because we may
always, by division, free any term of an equation we please, from
the number, by which it is multiplied. Now if we make

a+by P, c+dy+ey Q, f+gy+ﬁy +7cy
p+qy +uy'"—1- T, 4 +gy +v’ "'—U,

the above equation takes the following form,
a® 4 Paml4 Qam2+ Ra™3..... 4Tz U=0o.

188. It should be observed, that we may immediately eliminate

@ in the two equations of the second degree,
22 +Pa+Q=0, 224+ Pz4+Q =0,
by subtracting the second from the first. This operation gives
(P—P)z+ Q— Q =0,

=9
P_ PI >
substituting this value in one of the two proposed equations, the
first for example, we find

whence = —
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R—Q)P P(R—Q
gp__l)/;g— 1(3 P/)+Q—O
making the denominators to disappear, we have

(R—QP—P(P—P)(R—Q)+ QP —P)P =0,
then developing the two last terms, and making the reduction

(R— Q)P+ (P—P) (P @ — QP)=0.
We have thenonly to substitute for P, @, P, and @', the partic-
ular values which answer to the case under consideration.

189. Before proceeding further, I shall show, how we may
determine, whether the value of any one of the unknown quanti-
ties satisfies at the same time the two equations proposed. In
order to make this more clear, I shall take a particular example ;
the reasoning employed will, however, be of a general nature.

Let there be the equations

432y 4+80y2—98=0..... (1),
?44ey —29° —10=0..... 2),
which we shall suppose furnished by a question, that gives y = 3.

In order to verify this supposition, we must substitute 3 in the

place of y, in the proposed equation ; we have then

249>+ 272—98=0.....(a),

@ 120—28=0..... (b),

equations, which must present the same value of «, if that, which
has been assigned to y, be correct. If the value of z be repre-
sented by «, the equation (a) and the equation (b) will, according
to what has been proved in art. 179., both of them be divisible
by ®—we; they must, therefore, have a common divisor, of
which ® — ¢ forms a part; and in fact, we find for this common
divisor « —2 (48); we have therefore ¢ = 2. Thus the value
y =3 fulfils the conditions of the question, and corresponds to
x=2.

If there remained any doubt, whether or not the common divi-
sor of the equations (a) and (b) must give the value of x, we
might remove it, by observing, that these equations reduce them-
selves to

(2 + 112 4 49) (z—2) =0,
(x4 14) (r—2) =0,
from which it is evident, that they are verified by putting 2 in the
place of .
190. The method I have just explained, for finding the value of
x, when that of y is known, may be employed immediately in the
elimination of .
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Indeed, if we take the equations (1) and (2), and go through
the process necessary for determining whether they have a com-
mon divisor involving a, instead of finding one, we arrive at a
remainder, which contains only the unknown quantity y and
numbers, that are given ; and it is evident, that if we put in the
place of y its value 3, this remainder will vanish, since by the same
substitution, the equations’(1) and (2) become the equations (a)
and (b), which have a common divisor. Forming an equation,
therefore, by taking this remainder and zero for the two members,
we express the condition, which the values of y must fulfil, in order
that the two given equations may admit, at the same time, of the
same value for a.

The adjoining table presents the several steps of the operation
relative to the equations,

B4+ 3%y + 324> —98 =0,

2?4+4ay —2y° —10=0,
on which we have been employed in the preceding article. We
find for the last divisor,

(9y* +10) e —2y>—10y—98;
and the remainder, being taken equal to zero, gives

4315 4 345 y* — 1960 4 + 750 y2 — 2940 y — 4302 = 0,
an equation, which admits, besides the value y = 3 given above,
of all the other values of y, of which the question proposed is sus-
ceptible.

The remainder above mentioned being destroyed, that preceding
the last becomes the common divisor of the equations proposed ;
and being put into an equation, gives the value of & when that of y
is introduced. Knowing, for example, that ¥ = 3, we substitute
this value in the quantity

Oy*410)x—2y* — 10y —98;
then taking the result for one member, and zero for the other, we
have the equation of the first degree
91— 182 =0, or x=2.

191. The operation to which the above equations have been
subjected, furnishes occasion for several important remarks.
First, it may happen that the value of y reduces the remainder
preceding the last to nothing; in this case, the next higher re-
mainder, or that which involves the second power of , becomes
the common divisor of the two proposed equations. Introducing
then into this the value of y, and putting it equal to zero,
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we have an equation of the second degree, involving only =, the
two values of which will correspond to the known value of y. If
this value still reduce to nothing the remainder of the second de-
gree, we must go back to the preceding, or that into which the
third power of x enters, because this, in the case under considera-
tion, becomes the common divisor of the two proposed equations ;
and the value of y will correspond to the three values of @. In
general, we must go back until we arrive at a remainder, which is
not destroyed by substituting the value of y.

It may sometimes happen, that there is no remainder, or that
the remainder contains only known quantities.

In the first case, the two equations have a common divisor
independently of any determination of y; they assume then the
following form,

Px D=0, Q@x D=0,
D being the common divisor. It is evident, that we satisfy both
the equations at the same time, by making in the first place
D = 0; and this equation will enable us to determine one of the
unknown quantities by meawns of the other, when the factor D
contains both ; but if it contains only given quantities and @, this
unknown quantity will be determinate, and the other will remain
wholly indeterminate. With respect to the factors, which do not
contain x, they are found by what is laid down in art. 50.
Next, if we make at the same time
P=0, @=o,

we have still two equations, which will furnish solutions of the ques-
tion proposed.

Let there be, for example,

(ax+bdby—c)(me+4ny—d) =0,

(e +by—c)(me+ny—d)=0;
by supposing, first, the second factor, common to the two equa-
tions, to be nothing, we have with respect to the unknown quanti-
ties z and y only the equation

me 4+ ny—d =0,
and in this view the question will be indeterminate ; but if we
suppress this factor, we are furnished with the equations
ax +by—c=0, daby—c =0,

or arx+by=c¢ datby=c;
and in this case the question will be determinate, since we have as
many equations as unknown quantities.
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‘When the remainder contains only given quantities, the two
proposed equations are contradictory ; for the common divisor, by
which it is shown that they may both be true at the same time,
cannot exist, except by a condition which can never be fulfilled.®
This case corresponds to that mentioned in art. 68., relative to
equations of the first degree.®

192. If then we have any two equations,

a®» +Pam' 4+ Qa2+ Ram>..... 4+ Tae 4 U=0,
Pt Qa? + Ra3.....4+ Y4 2Z2'=0,
where the second unknown quantity, v, is involved in the coeffi-
cients, P, Q, &c. P/, Q', &c. in seeking the greatest common
divisor of their first members, we resolve them into other more
simple expressions, or come to a remainder independent of ,
which must be made equal to zero.

This remainder will form the final equation of the question
proposed, if it does not contain factors foreign to this question;
but it very often begins with polynomials involving y, by which the
highest power of @, in the several quantities, that have been suc-
cessively employed as divisors, is multiplied, and we arrive at a
result more complicated than that which is sought, should be. In
order to avoid being led into error with respect to the values of y
arising from these factors, the idea, which first presents itself, is,
to substitute immediately in the equations proposed each of the
values furnished by the equation involving y only; for all the
values, which give a common divisor to these equations, necessa-
rily belong to the question, and the others must be excluded. It
will be perceived also, that the final equation will become incom-

* Tt will be readily perceived, by what precedes, that the problem
for obtaining the final equation from two equations with two unknown
quantities, is, in general, determinate; but the same final equation
answers to an infinite variety of systems of equations with two un-
known quantities. Reversing the process, by which the greatest
common divisor of two quantities is obtained, we may form these
systems at pleasure ; but as this inquiry relates to what would be of
little use in the elementary parts of mathematics, and would lead me
into tedious details, I shall not pursue it here. Researches of this
nature must be left to the sagacity of the intelligent reader, who will
not fail, as occasion offers, of arriving at a satisfactory result.
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plete, if we suppress in the operation any factor involving ¥ ; but
all these circumstances together occasion some inconvenience in
the application of the above method,* and lead me to prefer the
method given by Euler, which I shall explain in the following
article.

193. Let there be the equations

F+ P+ Qo +R =0,

2 P+ QB+ R4 S=0;
representing by © — « the factor, which must be ccmmon to both,
when y is determinate in a proper sense, we may consider the
first as the product of @ — « by the factor of the second degree,
2* 4 px 4 ¢, and the second as the product of @ — « by the
factor of the third degree a® + p’ 2®* + ¢« + ', p and ¢, p', ¢
and 7/ being indeterminate coefficients. We have then

@+ Pa®+ Qo+ R=(v—¢) (®+ px + q),
at 4 Pad + Qa®+ Ra+ 5 = (2 —o) (2 + p'a® + ¢z + 7).
Exterminating the binomial (¢ — @), in the same manner as an
unknown quantity of the first degree (84), we find
B+P2+ Qe+ R) (P4 pa*> 4 ¢ a4 1)
=@+ PP Qa>+ Rae+4 S) (4 pe+ q);
a result, which must verify itself without any particular value being
assigned to « ; this cannot take place, however, unless the first
member be composed of the same terms as the second ; we must,
therefore, after performing the multiplications, which are indicated,
put the coefficients belonging to each power of « in one member,
respectively, equal to those belonging to the same power in the
other. In this way we obtain the following equations ;
P+p=P+p Rp'+Qq+Pr=S +Rp+Qq
Q+Py+y=Q+Pp+q Ry+Q'=Sp+Rq
R+4-Qp'+Pg'+4r=R+Qp+Pq Rr=8q.
As we have here six equations, and only five indeterminate quan-
tities, namely, p, g, p’s ¢> and 7/, all of which are of the first
degree, these quantities may be exterminated ; we shall thus arrive
at an equation, which, involving only the quantities P, @, R, P,

* On this subject see a memoir of M. Bret, in the 15th number of
Journal de P Ecole Polytechnique, also one of M. Lefébure, 3d num-
ber, vol, ii. of the Correspondance of the same school.
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', R, and &, will express a condition necessarily implied in the
conditions of the quesuon, and which, consequemly, will be the
final equation in y.*

Should this equation be identical, it follows, that the proposed
equations have at least one factor of the form @ — ¢, whatever y
may be; on the contrary, if the final equation contain only known
quantities, the proposed equations are contradictory.

When the final equation takes place, we obtain the factor @ — ¢
by dividing the first of the proposed equations by the polynomial

2 4+ pa + ¢; we find for the quotient
x4+ P —p,
and neglect the remainder, because it must necessarily be reduced
to nothing, when we substitute in the place of y a value obtained
from the final equation. Putting the above quotient equal to zero,
we find
x=p—DP,

and this value of « will be known, or at least will be expressed by

* The method of Euler, explained here, amounts to multiplying
each of the proposed equations by a factor, the coefficients of which
are indeterminate, putting the products equal, and disposing the
coefficients in such a manner, that the terms containing the unknown
quantity destroy each other. In this form it is presented in his
Introduction to the Analysis of Infinites. 'The exponent, which de-
notes the degree of the products, being designated by %, that of the
factors is £ — m for the equation of the degree m, and £ — n for that
of the degree n. The first term of each of these factors, having unity
for a coeflicient, the one contains k£ — m indeterminate coefficients,
and the other & — n. The sum of the products contains a number %
of terms involving = ; but it is necessary to destroy £ — 1 terms only,
because that, which contains the highest power of x, vanishes of
itself. It follows from this, that the whole number 2% — m —n of
indeterminate coeflicients must be equal to £ — 1, and consequently
k =m +4 n— 1; we must, therefore, multiply the equation of the
degree m by a factor of the degree n — 1, that of the degree » by a
factor of the degree m — 1, and put the products equal, term to term,
a method similar to that given in the text. It may be observed, that
this former method of Euler contains the germ of that developed by
Bézout in his Théorie des Equations Algébriques.
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means of y, if we substitute for p its value deduced from the equa-
tions of the first degree, formed above.
This expréssion assumes, in general, a fractional form, so that

%, or No — M = 0 ; and it may be seen in this
case, that the values of y, which would cause /M and JV to vanish
at the same time, would verify the preceding equation indepen-
dently of = ; this takes place in consequence of the fact, that by
means of these values, the proposed equations would acquire a
common factor of a degree above the first. It would not be diffi-
cult to go back to the immediate conditions in which this circum-
stance is implied ; but the limits I have prescribed to myself in the
present treatise do not permit me to enter into details of this kind.
194. Now let there be the equations
@+ P+ Q=0, 2>+ Pa+ Q =0;
the factors, by which & — ¢ is multiplied, will be here of the first
degree, or  + p and « 4 p’ simply ; in this case,
R=0R=08=0,¢g=0,¢=0,r=0,
and we have
P+ __P/+ P_p/ =P —P
Q1 Py = @+ Py } {P’p——P}?’= Q—Q
Ry =Q'p = 0.
From the first two equations we obtain

P—P)P—(QR—Q),

we have © =

p= P
P—=P)P—(QR—Q)
P P Pl

Substituting these values in the third, we have
(P—P)RP—(Q—Q)Q@=(P—P)PR—(Q—Q)Q
o (P—P)(PQ—QP)+(Q—QF ="

Now if in the equation

r=p—P;
we put in the place of p, its value found above, we have
Q—
€T = — P——-——FI.

195. In order to aid the learner, I shall indicate the operations
necessary for eliminating z in the two equations

PB+PP4+ Qe +R=0, 2*+Pa? 4 Qa+ R =0.
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In this case, we have
S =0, =0 (193),
and are furnished with these five equations ;

Py =P 4,
QR+-Pp+q¢ =Q +Pp+y
R+Qp+Pg=R +Qp+PFy

Rp+Qe=R p+ Qg
Rq¢ = R g,
which may take the following form,
p—p =P—P,
Pp—Pp+ q—¢ =Q—Q,
p—Qp+ Pq—P¢=R—F,
Rp—Rp+Qq¢—Qqg=0,
Rq—Rqg =0.

We may, by the rules given in art. 88., obtain immediately from
any four of these equations, the values of the unknown quantities
P, P’y q and ¢’ ; but the simple form, under which the first and the
last of the equations are presented, enables us to arrive at the
result, by a more expeditious method. In order to abridge the
expressions, we make

P—P=¢ Q—Q=¢, R—R =¢";
and proceed to deduce from the first and last of the proposed
equations,
_RI
P=p—e 9=—75;
then substituting these values in the three others, and making the
denominator R to disappear, we have

(PP—P)Rp+(R — R)q=R(¢ —P¢)...(a),
(@ — Q Rp + (RP'— PR) g =R (¢/— Qe) . .. (b),
(R—R)Rp+ (R —QR)q=—R?c¢ ...... ().

If now we obtain, from the equations (a) and (b), the values of p
and ¢ (88), and suppress the factor R, which will be common to
the numerators and the denominator, we have
__ (¢ —Pe)(RP—PR)—(R—R) (¢! —Qe)
P=(F=P) (RPF—PR)—(BE—F)(¥—Q)’
_(PP—P)(¢'—Qe)R—R(¢/— Pe) (Q— Q)
I=P=P)RP—PR)—(E—F) (¥—Q) ’
putting these values in the equation (c), we obtain a final equation,
divisible by R, and which may be reduced to
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(R'—R) [(¢ — P &) (RP'— PR)) — (R — R') (¢/ — Q)]
+ (RQ — QR)) [(P'—P) (¢/—Q¢) — (¢ — P &) (§ — Q)]
=—Re[(P'—P) (RP'—PR) — (R— R) (¢ — Q]
it only remains then to substitute for the letters e, ¢/, ¢”, the quan-

tities they represent.

196. If we have the three unknown quantities x, y, and 2, and
are furmshed with an equal number of equations, distinguished
by (1), (2), and (3) ; in order to determine these unknown quan-
tities, we may combine, for example, the equation (1) with (2) and
with (3), to eliminate «, and then exterminate y from the two re-
sults, which are obtained. But it must be observed, that by this
successive elimination, the three proposed equations do not concur,
in the same manner, to form the final equation ; the equation (1)
is employed twice, while (2) and (3) are employed only once;
hence the result, to which we arrive, contains a factor foreign to
the question (84). Bézout, in his Théorie des Equations, has
made use of a method, which is not subject to this inconvenience,
and by which he proves, that the degree of the final equation, re-
sulting from the elimination among any number whatever of com-
plete equations, containing an equal number of unknown quantities,
and quantities of any degrees whatever, is equal to the product of the
exponents, which denote the degree of these equations. M. Poisson,
has given a demonstration of the same proposition more direct
and shorter than that of Bézout; but the preliminary information,
which it requires, will not permit me to explain it here ; it will be
found in the Supplement. At present, I shall observe simply,
that it is easy to verify this proposition in the case of the final
equations presented in articles 194. and 195. If we suppose the
proposed equations given in those articles to be complete, the
unknown quantity y enters of the first degree into P and P”, of
the second degree into @ and @', of the third into R and R/;
hence it follows, that e will be of the first degree, ¢/ of the second,
and e of the third, and that the terms of the highest degree found
in the products indicated in the final equation given in art. 194.,
will have 4, or 2 . 2, for an exponent, and those of the final equa-
tion art. 195., will have 9 or 3 . 3.
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Of Commensurable Roots and the equal Roots of Numerical
Equations.

197. Havine made known the most important properties of
algebraic equations, and explained the method of eliminating the
unknown quantities, when several occur, I shall proceed to the
numerical resolution of equations with only one unknown quantity,
that is, to the finding of their roots, when their coefficients are
expressed by numbers.*

I shall begin by showing, thdt when the proposed equation has
only whole numbers for its coefficients, and that of its first term is
unity, its real roots cannot be expressed by fractions, and conse-
quently can be only whole numbers, or numbers, that are tncommen-
surable.

In order to prove this, let there be the equation

4+ Pa14 Qa2 ..... 4+ T4+ U=0,
a

in which we substitute for o an irreducible fraction 5’ the equa-

tion then becomes
® n—1 n—2
'-;;-|-Pgnj+ R T§+ U=0;
reducing all the terms to the same denominator, we have
a4+ Pa b4 Qa2b2...... 4+ Tab 14+ Ub=0,
which is equivalent to
a* +b(Pa 1+ Qa2b..... +Tab24Ub"1)=0.
The first member of this last equation consists of two entire parts,
one of which is divisible by &, and the other is not (98), since it is
a
b
or that @ and b have no common divisor ; one of these parts cannot
therefore destroy the other.
198. After what bas been said, we shall perceive the utility of
making the fractions of an equation to disappear, or of rendering

supposed, that the fraction - is reduced to its most simple form,

* There is no gencral solution for degrees higher than the fourth ;
properly speaking, it is only that for the sccond degree, which can
be regarded as complete. The expressions for the roots of equa.
tions of the third and fourth degree are very complicated, subject to
exceptions, and less convenient in practice than those, which I am
about to give; I shall resume the subject in the Supplement.

Alg. 28
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its coeflicients entire numbers, in such a manner, however, that
the first term may have only unity for its coecflicient. This is
done by making the unknown quantity proposed, equal to a new
unknown quantity divided by the preduct of all the denominators of
the equation, then reducing all the terms to the same denominator,
by the method given in art. 52.

Let there be, for example, the equation

3 a%® | bz e
m+m+n+p_~0’

we take x == m‘ip , and introducing this expression for « into the

proposed equation, we obtain'

o Ty s o
as the divisor of the first term contains all the factors found in
the other divisors, we may multiply by this divisor and thus re-
duce each term to its most simple expression ; we find then

Yy 4aonpy? + bm? np2y + cm?nd p* = 0.

If the denominators, m, n, p, have common divisors, it is only
necessary to divide » by the least number, which can be divided at
the same time by all the denominators. As these methods of
simplifying expressions will be readily perceived, I shall not stop to
explain them ; I shall observe only, that if all the denominators

m3 n3 m3 n2 m n2

. . K/
were equal to m, it would be sufficient to make 2 = nJ—L

The proposed equation, which woeuld be in this case,
3 0% b o
=+ m + m + m 0
then becomes

R

m3
and we have
y*+ay® +bdbmy+ m2c=0.
It is evident, that the above operation amounts to multiplying
all the roots of the proposed equations by the number m, since

=¥ —
@ = Z-gives y = m .

199. Now since, if @ be the root of the equation

*+Pa14+Qa2.... + Tae4U=0,
we have
U=—a—Pa!'—Qa*..... —Ta(179),
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it follows, that @ is necessarily one of the divisors of the entire
number U, and consequently, when this number has but few divi-
sors, we have only to substitute them successively in the place of
, in the proposed equation, in order to determine, whether or not
this equation has any root amoag whole numbers.

If we have, for example, the equation

a®—6a2 4270 — 38 =0,
as the numbers
1, 2, 19, 38,
are the only divisors of the number 38, we make trial of these,
both in their positive and negative state ; and we find, that the
whole number 4 2 only satisfics the proposed equation, or that
x = 2. We then divide the proposed equation by @ — 2 ; put-
ting the quotient cqual to zero, we form the equation
2 —4x 419 =0,
the roots of which are imaginary ; and resolving this, we find that
the proposed equation has three roots,
=2, =24+ —15, =2 —4/—15.

200. The method just explained, for finding the entire number,
which satisfies an equation, becomes impracticable, when the last
term of this equation has a great number of divisors; but the
equation

U=z—¢— P ' —Qe—*....— Ta,
furnishes new conditions, by meaus of which the operation may be
very much abridged. 1In order to make the process more plain, I
shall take, as an example, the equation

4+ PP 4 Qa4+ Ra + S =0,
The root being constantly represented by a, we have
a4+ PP+ Qe+ Ra 4 S =0,
S=—Ra— Qa*— Pa®—d,
from which we obtain
S

E:—R——Qa—l’aQ—a".

. . . S
1t is evident from this last equation, that 5 st be a whole number.
Bringing R into the first member, we have

S-}—R:-—Qa——l’a—aa;
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abridging the expression by making ES + R = R/, and dividing the

two members of the equation

R=—Qa—Pai*—a
by a, we have
%:—Q—Pw—ﬁ

R/
whence we conclude, that — must also be a whole number.

Transposing @, and making 1—2—/ + @ = @, then dividing the
two members by a, we obtain
QI

~ =—P—a,
a

!
whence we infer, that % must be a whole number.

Liastly, bringing P into the first member, making —Qa—/ +P=F,
and dividing by a, we have

Z =1

a

Putting together the above mentioned conditions, we shall per-
ceive that the number a will be the root of the proposed equation,
if it satisfy the equations

S ,
S+R=FR,
R’

7+Q—Q,’
@ _
~+P="P,
P

.E__l._l-_(),

in such a manner, as to make R/, @', and I whole numbers.

Hence it follows, that in order to determine, whether one of the
divisors a of the last term S can be a root of the proposed equa-
tion, we must,

1st. Divide the last term by the divisor a, and add to the quotient
the coefficient of the term involving x ;

2d. Divide this sum by the divisor a, and add to the quotient the
coefficient of the term involving x2;
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3d. Duvide this sum by the divisor a, and add to the quotient the
coefficient of the term involving x3;

4th. Duvede this sum by the divisor a, and add to the quotient
unity, or the coefficient of the term involving x*; the result will
become equal to zero, if a is, in fact, the root.

The rules given above are applicable, whatever be the degree
of the equation ; it must be observed, however, that the result will
not become equal to zero, until we arrive at the first term of the
proposed equation. ¥

201. In applying these rules to a numerical example, we may
conduct the operation in such a manner as to introduce the several
trials with all the divisors of the last term, at the same time.

For the equation

@t — 9a® 4+ 232 — 20z + 15 = 0,
the operation is, as follows ;
+ 154+ 5+ 8,4+ 1,— I,— 38, — 5, —15,
+ 11"{_ 3:+ 55+ 15, — 15, — 5’_ 3, — 1,
- 19, — 17, — 15, — 5, — 85, — 25, — 23, — 21,

6, 4 18, — 58,

3, + 9, — 67,

— 1,4+ 9,4+ 67,
0.

All the divisors of the last term 15 are arranged, in the order of

magpitude, both with the sign 4 and —, and placed in the same
line ; this is the line occupied by the divisors a.

The second line contains the quotients arising from the number
15, divided successively by all its divisors ; this is the line for the

.. S
quantities — .
a

* It would not be difficult to prove by means of the formula for the
/ !

. . . .. S R
quoticents given in art. 180., that the quantitics ;z’ 2 taken with

the contrary sign, and with the order inverted, are the coefficients of
the quotient arising from the polynomial
a4 Pad 4 QP+ Rz4 S
divided by x — @, and which is, consequently,
_ @, m, s

— s L ——

a a a

3
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The third line is formed by adding to the numbers found in the
preceding the coefficient — 20, by which z is multiplied ; this is

the line for the quantities B/ = 5 + R.

The fourth line contains the quotients of the several numbers in
the preceding, divided by the corresponding divisors ; this is the

. .. R . -
line for the quantities = In forming this line, we neglect all the

numbers, which are not entire.

The fifth line results from the numbers, written in the preceding,
added to the number 23, by which 2? is multiplied ; this line con-
tains the quantities @'.

The sixth line contains the quotients arising from the numbers in
the preceding, divided by the corresponding divisors; it compre-

/

hends the quantities

The seventh line comprehends the several sums of the numbers
in the preceding, added to the coeflicient — 9, by which a® is

multiplied ; in this line are found the quantities (—5—/ + P.

Lastly, the eighth line is formed, by dividing the several numbers
in the preceding by the corresponding divisors ; it is the line for

%‘ As we find — 1 only in the column, at the head of which 43

stands, we conclude, that the proposed equation has only one com-
mensurable root, namely, +- 3 ; it is, therefore, divisible by @ — 3.%

The divisors 4 1 and — 1 may be omitted in the table, as it is
easier to make trial of them, by substituting them immediately in
-the proposed equation.

202. Again, let there be, for example,

? — 72>+ 36 = 0.

Having ascertained, that the numbers 4 1 and — 1 do not
satisfy this equation, we form the table subjoined, according to the
preceding rules, observing that, as the term involving x is wanting
in this equation, & must be regarded as having 0 for a coefficient ;
we must, therefore, suppress the third line, and deduce the fourth
immediately from the second.

* Forming the quotient according to the preceding note, we find
L3 —622 4 51— 5.
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+36,+18,+12!+9’+G7+47+ 3+ 2,— 2,— 3:—4,_01—‘9a—127_18$-36
+ L+ 2,4 3,44,46,49,4-12,4-18, - 18,— 12, -9, 6, — 4,— 3,— 2,— 1
ORI 10K I KRR Rk ook oK K ok kb kRok 3ok ok ok ok dok R okoR ok R ok k ok R Rkook e

L4449, 40, + 4,41,
—6,—3, +2,+2,—3,—6,
—1,—1, —1L+1,+1,

0, O, 0.

We find in this example three numbers, which fulfil all the
conditions, namely, 4- 6, + 3, and — 2. Thus we obtain, at the
same time, the three roots, which the proposed equation admits
of ; we conclude then, that it is the product of three simple factors,
z—06,2—3,and x + 2.

203. It may be cbserved, that there are literal equations, which
may be transformed, at once, into numerical ones.

If we have, for example,

Y4+2pyP—33p°y+14p°=0,
making y = p x, we obtain
PPad42pa®—33 pie 4 14 p3 =0,
a result, which is divisible by p3, and may be reduced to
4 2a*—83a2 414 =0.

As the commensurable divisor of this last equation is x4 7,
which gives = — 7, we have

y=—"7p.

The equation involving y is among those which are called
homogeneous equations, because taken independently of the nu-
merical coefficients, the several terms contain the same number of
factors.*

204. When we have determined one of the roots of an equation,
we may take for an unknown quantity the difference between this
root and any one of the others; by this means we arrive at an
equation of a degree inferior to that of the equation proposed, and
which presents several remarkable properties.

Let there be the general equation

am 4 Paml 4 Q24 Ram?. .. .. +Tz+U=o0,
and let a, b, ¢, d, &c. be its roots; substituting @ -+ y in the place
of @, and developing the powers, we have

* For a more full account of the commensurable divisors of equa~
tions, the reader is referred to the third part of the Elémens d’Algé-
bre of Clairaut. This geometer has treated of literal as well as
numerical equations.
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m(m—I1)

am™ _!_mam—-ly + A\ 3 am——‘lyE_*_"._{_ym
+P a4 (m—1)P a™ % 4 Un—:l)a‘(—m—_g)l’a”“:’f—}-...
+ Qa4 (n—2) Qum—y+ "N gmsye
+R o™ 34 (m—3)R am’4y+(———m—3)2(m——4)Ra"“5y2+...

+Ta 4Ty

+U ‘
The first column of this result, being similar to the proposed
equation, vanishes of itself, since @ is one of the roots of this
equation ; we may, therefore, suppress this column, and divide all
the remaining terms by y ; the equation then becomes

ma"] + ﬁmg—;ﬂ a2y .. 4yt |
+ (m—1)Pa™2 Qni)g(-m-_ﬁ P a3y +...
+(n—2) Q= + =) Qe 4. 0.

+ (m—3) Ram* + (_—”‘—3)2(’"—"9 Ram=5y ...

+ T J

This equation has evidently for its m — 1 roots
y=b—a, y=c—a, y =d—a.....&c.
I shall represent it by

ﬂ—i—g—y-{—ggyg ....... Foy=0....... (d),
abridging the expressions, by making
ma™' 4+ (m—1)Pam2+(m—2) Qa2 ..... +T=u,
m(m—1)a™=24 (m—1) (m—2) Pa™3..... =D,
&ec.,
and I shall designate by #” the expression
a4 Pa™! 4+ Qa™2 . ..... + Ta+4U.

205. If the proposed equation has two equal roots ; if we have,
for example, @ = b, one of the values of y, namely, b — a, be-
comes nothing; the equation (d) will therefore be verified, by
supposing ¥ = 03 but upon this supposition all the terms vanish,
except the known term J ; this last must, therefore, be nothing of
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itself ; the value of @ must, therefore, satisfy, at the same time, the
two equations
V=0 and A=0.

When the proposed equation has three roots equal to a, namely,
a=>=r¢, two of the roots of the equation (d) become nothing,
at the same time, namely, b—a and ¢—a. In this case the
equation (d) will be divisible twice successively by y — 0 (179)
or y; but this can happen, only when the coefficients A and B
are nothing ; the value of @ must then satisfy, at the same time, the
three equations

V=0 A=0, B=0.

Pursuing the same reasoning, we shall perceive, that when the
proposed equation has four equal roots, the equation (d) will have
three roots equal to zero, or will be divisible three times successively
by y; the coefficients, /, B, and C, must then be nothing, at the
same time, and consequently the value of @ must satisfy at once the
four equations,

V=0 A=0, B=0, C=0.

By means of what has been said, we shall not only be able to
ascertain, whether a given root is found several times among the
roots of the proposed equation, but may deduce a method of de-
termining, whether this equation has roots repeated, of which we
are ignorant. '

For this purpose, it may be observed, that when we have
A =0, or

ma™ 4 (m—1)Pa" 2+ (m—2) Qa3...4+ T =0,
we may consider ¢ as the root of the equation

maml4 (m—1) Pa™24 (m—2) Qa™3. .. 4+ T =0,

z representing, in this case, any unknown quantity whatever; and
since @ is also the root of the equation ¥ = 0, or

a™ 4 P 2! 4 &e. = 0,
it follows (189), that z — a is a factor common to the two above
mentioned equations.

Changing in the same manner « into  in the quantities, B, C,
&c. the binomial @ — a becomes likewise a factor of the two
new equations, B = 0, C = 0, &ec. if the root @ reduces to x‘l.othing
the original quantities, B, C, &c.

What has been said with respect to the root a, may be applied to
every other root, which is several times repeated ; thus, by seeking,

Alg. 29
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according to the method given for finding the greatest common
divisor, the factors common to the equations,

V=0, A4=0, B=0, C=0,&c.,
we shall be furnished with the equal roots of the proposed equation,
in the following order ;

The factors common to the first two equations only, are twice
factors in the equation proposed ; that is, if we find for a common
divisor of "= 0 and .4 = 0, an expression of the form (z = &)
(z — 6), for example, the unknown quantity @ will have two values
equal to e, and two equal to 6, or the proposed equation will have
these four factors,

(z—a) (x—a) (z—6) (z—6)

The factors common, at the same time, to the first three of the
above mentioned equations form triple factors in the proposed
equation ; that is, if the former are presented under the form
(x — &) (x—6), the latter will take the form, (z— «)® (a — 6)3,
This reasoning may easily be extended to any length we please.

206. It may be remarked, that the equation A = 0, which, by
changing @ into , becomes

ma™ 4 (m—1)Pam2+ (m—2) Qam3.. 4 T =0,
is deduced immediately from the equation # =0, or from the
proposed equation,
"+ Pa1t Qam?. ..+ Tae++ U=0,

by multiplying each term of this last by the exponent of the power
of x, which it contains, and then diminishing this exponent by
unity. We may remark here, that the term U, which is equiva-
lent to U X a°% is reduced to nothing in this operation, where it
is multiplied by 0. The equation B = 0 is obtained from A4 =0,
in the same manner as /I = 0 is deduced from " =0; C =0
is obtained from B = 0, in the same manner as this from A = Q,
and so on.*

* It is shown, though very imperfectly, in most elementary trea-
tises, that the divisor common to the two equations V=0and 4 =0
contains equal factors raised to a power less by unity than that of
the equation proposed ; this may be readily inferred from what pre-
cedes; but for a demonstration of this proposition we refer the reader
to the Supplement, where it is proved in a manner, which appears to
me to be simple and new.
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207. To illustrate what has been said, by an example, I shall

take the equation
2 — 182t 4 672% — 171 2% 4 2162 — 108 = 0
the equation A = 0 becomes, in this case,
5at — 52 2% 4- 201 2% — 3422 4 216 = 0;

the divisor common to this and the proposed equation is

a® —8a® 4+ 2la— 18,
As this divisor is of the third degree, it must itself contain several
factors ; we must therefore seek, whether it does not contain some
that are common to the equation 3 = 0, which is here

20 2® — 156 2® + 402 » — 342 = 0.

We find, in fact, for a result &+ — 3; the proposed equation then
has three roots equal to 3, or admits of (x — 3)® among the num-
ber of its factors. Dividing the first common divisor by @ — 3, as
many times as possible, that is, in this case twice we obtain @ — 2.
As this divisor is common only to the proposed equation, and to the
equation = 0, it can enter only twice into the proposed equa-
tion. It is evident then, that this equation is equivalent to

(2 — 3)° (v — 2)® = 0.

208. As the equation (d) gives the difference between b and the
several other roots, when 0 is substituted for a, the difference
between ¢ and the others, when ¢ is substituted for a, &ec. and
undergoes no change in its form by these several substitutions,
retaining the coefficients belonging to the equation proposed, it may
be converted into a general equation, which shall give all the
differences between the several roots combined two and two. For
this purpose, it is only necessary to eliminate @ by means of the
equation

a+Pa' 4 Qam .. ... +Tae+ U=0;
for the result being expressed simply by the coefficients, and ex-
hibiting the rcot under consideration in no form whatever, answers
alike to all the roots.

It is evident, that the final equation must be raised to the degree
m (m — 1) ; for its roots

a—b a—c¢, a—d, &c.
b—a, b—c, b—d, &c.
¢c—a, ¢—b, c¢—d, &ec.
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are equal in number to the number of arrangements, which the m
letters, a, b, ¢, &c. admit of when taken two and two. Moreover,
since the quantities

¢—0band b —a, a—c and ¢ — a, b — ¢ and ¢ — ), &e.
differ only in the sign, the roots of the equation are equal, when
taken two and two, independently of the signs; so that if we have
y = a, we shall have, at the same time, y = — «. Hence it fol-
lows, that this equation must be made up of terms involving only
even powers of the unknown quantity ; for its first member must
be the product of a certain number of factors of the second degree
of the form

P—e=G—a) @+ (184);

it will, therefore, itself be exhibited under the form

Py gt +ty* 4 u=0.
If we put > = z, this becomes
2t prl g2t +tz4u=0;

and as the unknown quantity z is the square of y, its values will be
the squares of the differences between the roots of the proposed
equation.

It may be observed, that as the differences between the real roots
of the proposed equation are necessarily real, their squares will be
positive, and consequently the equation in 2 will have only positive
roots, if the proposed equation admits of those only which are real.

Let there be, for example, the equation

B —Te4+7=0;
putting = a + y, we have

@ +3d'y + 3ay’ +y°
—Ta—"Ty =
+ 7

Suppressing the terms a® — 7 a 4 7, which, from their identity
with the proposed equation, become nothing when united, and
dividing the remainder by y, we have

3+ 3ay+1P—7=0;
eliminating a by means of this equation and the equation
@ —Ta+47=0,
we have
¥ — 429" 4 44132 — 49 = 0;
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putting z = 4, this becomes
22— 4222 44412 — 49 = 0.
209. The substitution of ¢ + y in the place of z in the equation
g™ 4 Pam™l 4 Qam™2 .. ... + U = 0(204),
is sometimes resorted to also in order to make one of the terms of
this equation to disappear. We then arrange the result with refe-
rence to the powers of y, which takes the place of the unknown
quantity 2, and consider & as a second unknown quantity, which is
determined by putting equal to zero the coefficient of the term we
wish to cancel ; in this way we obtain
m(m — 1)

y”‘-{—ma-_z/’"—l—i-————l 5 Ay .. 4 am
+ Pyl 4+ (m—1)Pay™2..... + Pa™! U,
+ Qy—=2.....4+ Qam> (T

.+ .
If the term we would suppress be the second, or that which
involves y™1, we make ma 4- P = 0, from which we deduce

P S~ . . .
@ = — ~—. Substituting this value in the result, there remain only

the terms involving
Yy Y :‘/m_ay &e.

Hence it follows, that we make the second term of an equation to
disappear, by substituting for the unknown quantity in this equation
a new unknown quantity, united with the coefficient of the second
term taken with the sign contrary to that originally belonging to 1t,
and diwvided by the exponent of the first term.

Let there be, for example, the equation

24 62—3x 44 =0;
we have by the rule
2=y— 8 =y—2;
substituting this value, the equation becomes
¥—02+12y— 8
+ 64— 24y 424 $=0
— 3y+ ’
, + 4
which may be reduced to
P —15y 4+ 26 = 0,
in which the term involving % does not appear. We may cause
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the third term, or that involving ™, to disappear by putting equal
to zero the sum of the quantities, by which it is multiplied, that is,
by forming the equation
mODef(m—1)Pat Q=0.

Pursuing this method, we shall readily perceive, that the fourth
term will be made to vanish by means of an equation of the third
degree, and so on to the last, which can be made to disappear
only by means of the equation

a4+ Pa™ 1 4+ Qo™ ... .. + U =0,
perfectly similar to the equation proposed.

It is not difficult to discover the reason of this similarity. By
making the last term of the equation in y equal to zero, we sup-
pose, that one of the values of this unknown quantity is zero ; and
if we admit this supposition with respect to the equation 2 =y 4 @,
it follows that @ = a; that is, the quantity @, in this case, is neces-
sarily one of the values of .

210. We have sometimes occasion to resolve equations into
factors of the second and higher degrees. I cannot here explain
in detail the several processes, which may be employed for this
purpose ; one example only will be given.

Let there be the equation

B —24a% 41222 — 1l 47 =0,
in which it is required to determine the factors of the third de-
gree ; I shall represent one of these factors by
@ +pat+qr
the coefficients p, ¢, and r, being indeterminate. They must be
such, that the first member of the proposed equation will be ex-
actly divisible by the factor
@+ pa®+ g+,
independently of any particular value of  ; but in making an actual
division, we meet with a remainder
— (P —2pg—24p +r—12)2°
—(PPg—pr— ¢ —24q+ 1)
—(p%'—/-gr—Q4r—7),

an expression, which must be reduced to nothing, independently of
@, when we substitute for the letters, p, ¢, and r, the values that
answer to the conditions of the question. We have then
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pP—2pg—24p 4+ r—12 =0,
Pg—pr—q¢—24q4+11=0,
pPPr—gqr—24r—17=0.
These three equations furnish us with the means of determining
the unknown quantities, p, ¢, and r; and itis to a resolution of
these, that the proposed question is reduced.

[l

Il

Of the Resolution of Numerical Equations by /pproximation.

211. Havine completed the investigation of commensurable
divisors, we must have recourse to the methods of finding roots by
approximation, which depend on the following principle ;

When we arrive at two quantitics, which, substituted in the place
of the unknown quantity in an cquation, lead to two results with
contrary signs, we may infer, that one of the roots of the proposed
equation lies between these two quantitics, and is consequently real.

Let there be, for example, the equation

a®—132° 4 7o —1 = 0;
if we substitute, successively, 2 and 20 in the place of x, in the
first member, instead of being reduced to zero, this member
becomes, in the former case, equal to — 31, and in the latter, to
-+ 2939 ; we may therefore conclude, that this equation has a
real root between 2 and 20, that is, greater than 2 and less
than 20.

As there will be frequent occasion to express this relation, I
shall employ the signs > and <7, which algebraists have adopted
to denote the inequality of two magnitudes, placing the greater of
two quantities opposite the opening of the lines, and the less against
the point of meeting. Thus I shall write

@ > 2, to denote, that @ is greater than 2,
x < 20, to denote, that x is less than 20.

Now in order to prove what has been laid down above, we may
reason in the following manner. Bringing together the positive
terms of the proposed equation, and also those which are negative,
we have

@ 4 Tz — (134 + 1),
a quantity, which will be negative, if we suppose @ = 2, because,
upon this supposition,

B Trl 182 4 1,
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and which becomes positive, when we make x = 20, because,
in this case,
24+ Tr> 13274 1.
Moreover, it is evident, that the quantities
2 4+7x and 132% 41,
each increase, as greater and greater values are assigned to «, and
that, by taking values, which approach each other very nearly, we
may make the increments of the proposed quantities as small as
we please. But since the first of the above quantities, which was
originally less than the second, becomes greater, it is evident, that
it increases more rapidly than the other, in consequence of which
its deficiency is made up, and it comes at length to exceed the
other ; there must, therefore, be a point at which the two magni-
tudes are equal.
The value of @, whatever it be, which renders
BT =132+ 1,
and such a value has been proved to exist, gives
a4 7:0-—(13:02—{— 1) = 0,

or ¥ —132 72 —1=0,
and must necessarily, therefore, be the root of the equation pro-
posed.

What has been shown with respect to the particular equation
2 —13a>2 4+ T —1 =0,

may be affirmed of any equation whatever, the positive terms of
which I shall designate by P, and the negative by V. Let @ be
the value of &, which leads to a negative result, and b that which
leads to a positive one ; these consequences can take place only
upon the supposition, that by substituting the first value, we have
P < WV, and by substituting the second, P > N'; P, therefore,
from being less, having become greater than JV, we conclude as
above, that there exists a value of z, between & and b, which gives

P = N*

* The above reasoning, though it may be regarded as sufficiently
evident, when considered in a general. view, has been developed by
M. Encontre in a manner, that will be found to be useful to those,
who may wish to see the proofs given more in detail.

1. It is evident, that the increments of the polynomials P and N
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The statement here given seems to require, that the values as-
signed to x should be both positive or both negative, for if they

may be made as small as we please. Let
P—=gam 4 62"..... + 0 29,
m being the highest exponent of z ; if we put @ 4 ¥ in the place of z,
this polynomial takes the form
A+ By+4Cy2..... + T'ym,
the coefficients, 4, B, C, .. .. T, being finite in number and having
a finite value ; the first term A will be the value the polynomial P
assumes, when z — a; the remainder,
By+4+Cy?....4+Tyn=y(B+4Cy.... Ty,
will be the quantity, by which the same polynomial is increased when
we augment by y the value z — a. This being admitted, if S desig-
nate the greatest of the coefficients, B, C, . ... T, we have
B+Cy....+ Ty SA+y....+ y™);

now
l—f—y....+ym—1::_‘;— (158) ;
therefore, )
B+ C T ym=i (1—y)
yB+Cy....+ Ty )<Sy—1—_—51—,
and, consequently, the quantity by which the polynomial P is increas-
ed, will be less than any given quantity m, if we make 3/ (1 —9")
-y
. . . . Sy
less than this last quantity ; this is effected by making 1=y = m,
because, in this case, = ¥s ":_{__ being < 1, the quantity—— Sy =y ),
-y
S ymtl
equal to Sy Sym —, will necessarily be less than the quantity m,

l—y I—y

which is indefinitely small.

2. If we designate by % the increment of the polynomial P, and by
k that of the polynomial IV, the change, which will be produced in
the value of their difference, will be A — %, and may be rendered
smaller than a given quantity, by making smaller than this same
quantity the increment, which is the greater of the two; we may,
therefore, in the interval between z = @ and z = b, take values,
which shall make the difference of the polynomials 2 and IV change
by quantities as small as we please, and since this difference passes in
this interval from positive to negative, it may be made to approach as
near to zero as we choose. See Annales de Mathématigucs pures et
appliquées, published by M. Gergonne, vol. iv. p. 210,

Alg. 30
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have different signs, that which is negative produces a change in
the signs of those terms of the proposed equation, which contain
odd powers of the unknown quantity, and, consequently, the ex-
pressions P and JV" are not formed in the same manner, when we
substitute one value, as when we substitute the other. This diffi-
culty vanishes if we make = 0; in this case, the proposed equa-
tion reduces itself to its last term, which has necessarily a sigu
contrary to that of the result arising from the substitution of one or
the other of the above mentioned values. Let there be, for exam-
ple, the equation
et —2a8 —3a*— 1520 —3 =0,
the first member of which, when we put
2=—1 and =2,
becomes -}~ 12 and — 45. If we suppose @ = 0, this member is
reduced to — 3 ; substituting, therefore,
=0 and o= —1,
we arrive at two results with contrary signs; but putting — y in
the place of 2, the proposed equation is changed to
¥4+ 2P —3P 4 156y—3 =0,
and we have
P=y 424415y, N=33*+ 3,
whence
P <V, when y = 0,
P> N, wheny = 1.
Reasoning as before, we may conclude, that the equation in y has
a real root, found between 0 and 4 1 ; whence it follows, that the
root of the equation in « lies between 0 and — 1, and, conse-
quently, between 4 2 and — 1.

As every case the proposition enunciated can present, may be
reduced to one or the other of those which have been examined,
the truth of this proposition is sufficiently established.

212. Before proceeding further, I shall observe, that whatever
be the degree of an equation, and whatever its coefficients, we may
always assign a number, which, substituted fon the unknown quan-
tity, will render the first term greater than the sum of all the others.
The truth of this proposition will be immediately apparent from
what has been intimated of the rapidity, with which the several
powers of a number greater than unity increase (126) ; since the
highest of these powers exceeds those below it more and more in
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proportion to the increased magnitude of the number employed, so
that there is no limit to the excess of the first above each of the
others. Observe, moreover, the method by which we may find a
number that fulfils the condition required by the enunciation.

It is evident, that the case most unfavorable to the supposition
is that, in which we make all the coefficients of the equation nega-
tive, and each equal to the greatest, that is, when, instead of

a4 Pam 14+ Qam2.... 4+ Tae +U=0,
we take
a?®— Sl —8Sam2,...—Se—S=0,
S representing the greatest of the coefficients, P, @, ..... T, U.
Giving to the first member of this equation the form
am— S (@™t am 2L 4 1),
we may observe, that
2

m
Tz —

e A )

]

(158);

the preceding expression then may be changed into

S (zm — 1) S am S

™ — or into ™ —- —_—
1 ormt z—l+z—l

If we substitute M for x, this becomes

S Mn S

M — =1+ =7

a quantity, which evidently becomes positive, if we make

. SMn
==
Now if we divide each member of this equation by U™, we have
S
1=]T1T1 or M—S-!—l.

By substituting therefore for ® the greatest of the coefficients
found in the equation, augmented by unity, we render the first term
greater than the sum of all the others.

A smaller number may be taken for M, if we wish simply to
render the positive part of the equation greater than the negative ;
for to do this, it is only necessary to render the first term greater
than the sum arising from all the others, when their coefficients are
each equal, not to the greatest among all the coefficients but to the
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greatest of those which are negative ; we have, therefore, merely to
take for JM this coefficient augmented by unity.*

Hence it follows, that the positive roots of the proposed equa-
tion are necessarily comprehended within 0 and S + 1.

In the same way we may discover a limit to the negative roots ;
for this purpose we must substitute — y for @, in the proposed
equation, and render the first term positive, if it becomes negative
(178). It is evident, that by a transformation of this kind, the
positive values of y answer to the negative values of «, and the
reverse. If R be the greatest negative coefficient after this change,
R 4~ 1 will form a limit to the positive values of y ; consequently
— R — 1 will form that of the negative values of a.

Lastly, if we would find for the smallest of the roots a limit
approaching as near to zero as possible, we may arrive at it by

S | . . .
substituting 7 for @ in the proposed equation, and preparing the

equation in g, which is thus obtained, according to the directions
given in art. 178. As the values of y are the reverse of those of
, the greatest of the first will correspond to the least of the second,
and, reciprocally, the greatest of the second to the least of the first.
If, therefore, S’ + 1 represent the highest limit to the values of ¥,
that is, if

y<S+1,
which gives

Lestn,
we shall have, successively,

1< (8 + l)m,s,_:L—l < a
Indeed, it is very evident, that we may, without altering the

relative magpitude of two quantities separated by the sign < or
>, multiply or divide them by the same quantity, and that we
may also add the same quantity to or subtract it from each side of

the signs <C and >, which possess, in this respect, the same pro-
perties as the sign of equality.

* In the Résolution des équations numériques, by Lagrange, there
are formulas, which reduce this number to narrower limits, but what
has been said above is sufficient to render the fundamental proposi-
tions for the resolution of numerical equations independent of the
consideration of infinity.
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213. It follows from what precedes, that every equation of a
degree denoted by an odd number has necessarily a real root affected
with a sign contrary to that of its last term ; for if we take the
number JM such, that the sign of the quantity

Mm 4 P14 QM2 .. ... TM =+ U,
depends solely on that of its first term JI™, the exponent m being
an odd number, the term JM™ will have the same sign as the num-~
ber M (128). This being admitted, if the last term U has the
sign 4, and we make a = — M, we shall arrive at a result
affected with a sign contrary to that, which the supposition of
@ = 0 would give; from which it is evident, that the proposed
equation has a root between 0 and — JM, that is, a negative root.
If the last term U has the sign —, we make @ = 4 M ; the
result will then have a sign contrary to that given by the supposi-
tion of « = 0, and in this case, the root will be found between O
and +4 M, that is, it will be positive.

214. When the proposed equation is of a degree denoted by
an even number, as the first term J™ remains positive, whatever
sign we give to J, we are not, by the preceding observations,
furnished with the means of proving the existence of a real root,
if the last term has the sign -, since, whether we make # = 0,
or ® = == JM, we have always a positive result. But when this
term is negative, we find, by making

e=4M =0 x2=—JM,
three results, affected respectively with the signs 4, —, and -,
and, consequently, the proposed equation has, at least, two real
roots in this case, the one positive, found between JM and 0, the
other negative, between 0 and — JM; therefore, every equation of
an even degree, the last term of which is negative, has at least two
real roots, the one positive and the other negative.

215. I now proceed to the resolution of equations by approxi-
mation ; and in order to render what is to be offered on this
subject more clear, 1 shall begin with an example.

Let there be the equation

2t —42° —3 2427 =0;
the greatest negative coefficient found in this equation being — 4,
it follows (212), that the greatest positive root will be less than
5. Substituting — y for 2, we have

¥ 49+ 8y 427 =0;



238 Elements of Algebra.

and as all the terms of this result are positive, it appears, that
y must be negative ; whence it follows, that « is necessarily posi-
tive, and that the proposed equation can have no negative roots ;
its real roots are, therefore, found between 0 and -} 5.

The first method, which presents itself for reducing the limits,
between which the roots are to be sought, is to suppose succes-
sively

e=1 =2, =3, v=4;
and if two of these numbers, substituted in the proposed equation,
lead to results with contrary signs, they will form new limits to
the roots. Now if we make
& = 1, the first member of the equation becomes + 21,

=2 . i o et e e e e e et 5,
L — 9,
x=4........ e e e e e e e e + 15;

it is evident, therefore, that this equation has two real roots, the
one found between 2 and 3, and the other between 3 and 4. To
approximate the first still nearer, we take the number 2,5, which
occupies the middle place between 2 and 3 (JArith. 129), the
present limits of this root; making then # = 2,5, we arrive at the
result
+ 39,0625 — 62,5 — 7,5 + 27 = — 3,9375 ;

as this result is negative, it is evident, that the root sought is be-
tween 2 and 2,5. The mean of these two numbers is 2,25 ; taking
x = 2,3, we have the root sought within about one tenth of its value,
and shall approximate the true root very fast by the following
process, given by Newton.

We make 2 = 2,3 4-y; it is evident, that the unknown quan-
tity y amounts only to a very small fraction, the square and higher
powers of which may be neglected ; we have then

at = 2,34+ 4(2,3)3y
—4a8 =—4(2,3—12(2,3)%y
—3r =—3(2,3) — 3y;
substituting these values, the proposed equation becomes
—0,5839 — 17,812 y = 0,
which gives
0,5839
y= — 17312
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Stopping at hundredths, we obtain for the result of the first opera-~
tion
y=—0,03 and z =2,3 — 0,03 = 2,27.
To obtain a new value of @, more exact than the preceding, we
suppose @ = 2,27 - ¥’ ; substituting this value in the proposed
equation and neglecting all the powers of y’ exceeding the first, we
find
—0,04595359 — 18,046468y' = 0,

whence

0,04595359
Y =—Is046i68 — — %0025,

and, consequently, « = 2,2675. We may, by pursuing this pro-
cess, approximate, as nearly as we please, the true value of «.

If we seek the second root, contained between 3 and 4, by the
same method, we find, stopping at the fourth decimal place,

& = 3,6797.

216. We may ascertain the exactness of the method above
explained, by seeking the limit to the values of the terms, which
are neglected.

If the proposed equation were

am - Paml4- Qam™? .. .. .. + T2+ U=0,
substituting ¢ + y for x, we should have for the result the first
of the equations found in art. 204., because a being not the root of
the equation, but only an approximate value of x, cannot reduce to
nothing the quantity

a4+ Pam 14 Qam™2 . . .. .+ Ta+ U.

Representing this last by 77, we have, mstead of the equatlon (d)
above referred to, the following

V+—13/+m!/2+1—'§-_393 cee o FYt=0;

from which we obtain

B C
ﬂy:—V—'l—.—ng—myB......—-ym,
_ |4 By Oy ym
Yy=—ZA4"1.24"1.2.34° """ """ —73F

Neglecting the powers of y exceeding the first, we have

y=—z

A’
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and this value differs from the real value of y by
TreaTreBA T A
If o differs from the true value of # only by a quantity less

1 .
than P?a, the above mentioned error becomes less than that,

which would arise from putting% a in the place of y, which would

give

. B a 2 __c a 3 1 /a\™
1_._27([) _I.Q_ﬂ(p> """" Z(E) ’

Finding the value of this quantity, we shall be able to determine,
whether it may be neglected when considered with reference to

14 . : .
@ and if it be found too large, we must obtain for ¢ a number,

which approaches nearer to the true value of x.

To conclude, when we have gone through the calculation with
several numbers, y, ¥/, "/, &c. if the results thus obtained form a
decreasing series, an approximation is certain.

217. The method we have employed above, is called the
Method by successive Substitutions. Lagrange has considerably
improved it.¥* He has remarked, that by substituting only entire
numbers, we may pass over several roots without perceiving them.
In fact, if we have, for example, the equation

(r—1) (2—1) (2—3) (e —14) =0,
by substituting for @ the numbers, 0, 1, 2, 3, &c. we shall pass
over the roots 1 and }, without discovering that they exist ; for we
shall have

(0—HO—35(0—=3) (0= =43 X X3 X4,

1= 1—HI=3)1—=4)=+FXiX2X3
results affected by the same sign. It will be readily perceived,
that this circumstance takes place in consequence of the fact,
that the substitution of 1 for @ changes at the same time the
signs of both the factors,  — 1, and @ — 3, which pass from the
negative state, in which they are when 0 is put in the place of
x, to the positive ; but if we substitute for ® a number between
1 and 1, the sign of the factor @ — } alone will be changed, and
we shall obtain a negative result.

* See Résolution des Equations Numériques.
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We shall necessarily meet with such a number, if we substitute,
in the place of @, numbers, which differ from each other by a
quantity less than the difference between the roots § and 1. 1f; for
example, we substitute 1, 2, 2, 4, 2, &c. there will be two changes
of the sigun.

It may be objected to the above example, that when the frac-
tional coefficients of an equation have been made to disappear, the
equation can have for roots only either entire or irrational numbers,
and not fractions; but it will be readily seen, that the irrational
numbers, for which we have, in the example, substituted fractions
for the purpose of simplifying the expressions, may differ from each
.other by a quantity less than unity.

In general, the results will have the same sign, whenever the
substitutions produce a change in the sign of an even number of
factors.* To obviate this inconvenience we must take the num-
bers to be substituted, such, that the difference between the small-
est limit and the greatest, will be less than the least of the dif-
ferences, which can exist between the roots of the proposed equa-
tion ; by this means the numbers to be substitued will necessa-
rily fall between the successive roots, and will cause a change in
the sign of one factor only. This process does not presuppose the
smallest difference between the roots to be known, but requires
only, that the limit, below which it cannot fall, be determined.

In order to obtain this limit, we form the equation involving the
squares of the differences of the roots (208).

Let there be the equation

2t prt gl ootz u=0....(D),
to obtain the smallest limit to the roots, we make (212) z = %; we

have then the cquation
1 1 1 1
v——n‘+]7l;n—_‘l—+q{]—n—_—§....+t;+‘u:0,

or, reducing all the terms to the same denominator,

14+po+go*..o..+ et fur” =0,

then disengaging v™,

* Equal roots cannot be discovered by this process, when their
number is even ; to find these we must employ the method given in
art. 205.

Alg. 31
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v"+£v”"l...—|-%v2+§v+}d=0;

oo T . . . -
and if ;; represent the greatest negative coefficient found in this

equation, we shall have

T < =z
T+
It is only necessary to consider here the positive limit, as this alone
relates to the real roots of the proposed equation.
Knowing the limit
1w
r Tr4
u° + 1
less than the square of the smallest difference between the roots of
the proposed equation, we may find its square root, or at least, take
the rational number next below this root ; this number, which I
shall designate by %, will represent the difference which must exist
between the several numbers to be substituted. We thus form the
two series,

0, + % + 2k + 3k, &ec.
—k, — 2k, —3Fk, &ec.
from which we are to take only the terms, comprehended between
the limits to the smallest and the greatest positive roots, and those
to the smallest and the greatest negative voots of the proposed
equation. Substituting these different numbers, we shall arrive at
a series of results, which will show by the changes of the sign that
take place, the several real roots, whether positive or negative.
218. Let there be, for example, the equation
=Tz 4+ 7=0,

from which, in art. 208., was derived the equation

28— 4222 4 4412 — 49 = 0;

making z = l, and, after substituting this value, arranging the re-
v

sult with reference to v, we have
=99 + 30— =0,
from which we obtain

v < 10, 2> %3
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we must, therefore, take & = or <C -—/1—1_5. This condition will be

fulfilled ,if we make £ = 1; but it is only necessary to suppose
%k = 1; for by putting 9 in the place of v in the preceding equa-
tion, we obtain a positive result, which must become greater, when
a greater value is assigned to v, since the terms ¢® and 9 +? already
destroy each other, and 4% v exceeds .
The highest limit to the positive roots of the proposed equation
2B—Te4+7=0,
is 8, and that to the negative roots — 8; we must, therefore, sub-
stitute for @ the numbers
¢,

{t]
S

’

g e 0 e e 0 00

b

’

e e
(SIS

Y
e

2
39 39
1 2
1,—z ye v evaos .
. . . z! e

We may avoid fractions by making = 3 ; for in this case the
differences between the several values of a/ will be triple of those
between the values of @, and, consequently, will exceed unity ; we

shall then have only to substitute, successively,

in the equation
2 — 63 2/ 4 189 = 0.

The signs of the results will be changed between 4 4 and 4 5,
between 4 5 and + 6, and between — 9 and — 10, so that we
shall have for the positive values,

2 >4and <5 @ and < &

@ ; 5and§ G}Whence{wi andgé
and the negative value of &’ will be found between — 9 and — 10,
that of » between — £ and — 1.

Knowing now the several roots of the proposed equation within
1, we may approach nearer to the true value by the method ex-
plained in art. 215.

219. The methods employed in the example given in art. 21 5
and in the preceding article, may be applied to an equation of any
degree whatever, and will lead to values approaching the severaj
real roots of this equation. It must be admitted, however, tha
the operation becomes very tedious, when the degree of the pro-
posed equation is very elevated ; but in most cases it will be un-
necessary to resort to the equation (D), or rather its place may be

e el
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supplied by methods, with which the study of the higher branches
of analysis will make us acquainted.*®

I shall observe, however, that by substituting successively the
numbers 0, 1, 2, 3, &c. in the place of «, we shall often be lead
to suspect the existence of roots, that differ from each other by a
quantity less than unity. In the example, upon which we have
been employed, the results are

+ 741,41+ 18,
which begin to increase after having decreased from 4 7 to 4- 1.
From this order being reversed it may be supposed, that between
the numbers 4 1 and 4- 2 there are two roots either equal or
nearly equal. To verify this supposition, the unknown quantity
ly_()’ we find
43 — 700y -+ 7000 = O,
an equation, which has two positive roots, one between 13 and 14,
and the other between 16 and 17.

The number of trials necessary for discovering these roots is not
great ; for it is only between 10 and 20, that we are to search for
y; and the values of this unknown quantity being determined in
whole numbers, we may find those of & within one tenth of unity.

220. When the coefficients in the equation proposed for resolu-
tion are very large, it will be found convenient to transform this
equation into another, in which the coefficients shall be reduced to
smaller numbers. If we have, for example

@t — 8023 + 1998422 — 14937 & 4 5000 = 0,
we may make x == 10z ; the equation then becomes

24— 823 4 19,98 2% — 14,937 2 4~ 0,5 = 0.
If we take the entire numbers, which approach nearest to the
coefficients in this result, we shall have

2 — 8284202 — 152 40,5 = 0.
It may be readily discovered, that z has two real values, one be-
tween O and 1, the other between 1 and 2, whence it follows, that

those of the proposed equation are between 0 and 10, and 10 and
20.

should be multiplied. Making x =

* A very elegant method, given by Lagrange for avoiding the use
of the equation (D) may be found in the T'raité de la Résolution des
Equations numériques.
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I shall not here enter into the investigation of imaginary roots, as
it depends on principles we cannot at present stop to illustrate ;
I shall pursue the subject in the Supplement.

221. Lagrange has given to the successive substitutions a form
which has this advantage, that it shows immediately what ap-
proaches we make to the true root by each of the several opera-
tions, and which does not presuppose the value to be known within
one tenth.

Let a represent the entire number immediately below the root
sought ; to obtain this root, it will be only necessary to augment a

by a fraction; we have, therefore, * = a 4 ; The equation

involving y, with which we are furnished by substituting this value
in the proposed equation, will necessarily have one root greater
than unity ; taking & to represent the entire number immediately

1

below this root, we have for the second approximation ¢ = a 4 e
But b having the same relation to y, which @ has to #, we may, in
the equation involving y, make y = b - ;, and g’ will necessarily
be greater than unity ; representing by 0’ the entire number imme-

diately below the root of the equation in y’, we have

1 bv +1
y:b+[7:—TTL——;

substituting this value in the expression for x, we have

b

r=a + b_b’ +—1,
for the third approximation to . We may find a fourth by making
y=b4 yl—,,; for if b designate the entire number immediately

below y”, we shall have

1 oo 41
y =+ o b//-l—_’

whence
. bl/ _ b bl bll + bll + b
y—b+b/b”+l— b’b”—i—l b

b’b”+l
r=a + bb’b”-{-—b”?b’

and so on.
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222. I shall apply this method to the equation
B —Ta4+7=0.
We have already seen (218), that the sinallest of the positive roots
of this equation is found between 4 and £, that is, between 1 and

2; we make, therefore, 2 = 1 4 %; we shall then have

P*—4yP4+3y41=0.
The limit to the positive roots of this last equation is 5, and by
substituting, successively, 0, 1, 2, 3, 4, in the place of y, we imme-
diately discover, that this equation has two roots greater than unity,
one between 1 and 2, and the other between 2 and 3. Hence
a=1+41 and z2=1+4 L
that is,
=2, and =%

These two values correspond to those, which were found above
between ¢ and 2, and between £ and %, and which differ from
each other by a quantity less than unity.

In order to obtain the first, which answers to the supposition of
y = 1, to a greater degree of exactness, we make

y=1+7,
we then have
y3—2y%2 —y 4+ 1 = 0.
We find in this equation only one root greater than unity, and that
is between 2 and 3, which gives

=1+ = ;,
whence
2=1+42 =235,
Again, if we suppose ¥y = 2 - g%’ we shall be furnished with the

equation

y//3_ 3y//2_ 4y// —_—1 = O;
we find the value of %/ to be between 4 and 5 ; taking the smallest
of these numbers, 4, we have

y=241 y=1+4=2% a=1+43%=13

It would be easy to pursue this process, by making 3/ = 4 4 y_%’_”

and so on.
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I return now to the second value of ®, which, by the first ap-
proximation, was found equal to , and which answers to the sup-
position of ¥ = 2. Making y = 2 -}-% and substituting this
expression in the equation involving y, we have, after changing the
signs in order to render the first term positive,

y 4 y?—2y —1=0.
This equation, like the corresponding one in the above operation,
has only one root greater than unity, which is found between 1 and
2 ; taking ¥ = 1, we have
y =3, T =

(S

Again assuming
1
/ — 1 + F,
we are furnished with the equation
y//3_3y//2_4y//__ 1 = 0,
in which y” is found to be between 4 and 5, whence

/I —="5 — 14 — 1
¥y = ¥y=r, T =7

Bl

We may continue the process by making y’ =4 _%_’ and
y "

50 on.
The equation &®— 72 47 = 0 has also one negative root,
between — 3 and — 4.  In order to approach it more nearly, we

make x = — 3 ——;; which gives

P—20y°—9y—1=0,y>20 and < 21,
whence

—_—_— e L —___ 61
T = 3 20 — 20

To proceed further, we may suppose y = 20 :‘-117 &e., we

shall then obtain, successively, values more and more exact.

The several equations transformed into equations in y, y, y,
&ec. will have only one root greater than unity, unless two or more
roots of the proposed equation are comprehended within the same
limits @ and @ 4~ 1 ; when this is the case, as in the above example,
we shall find in some one of the equations in y, ¥/, &ec. several
values greater than unity. These values will introduce the different
series of equations, which show the several roots of the proposed
equation, that exist within the limits ¢ and o + 1.
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The learner may exercise himself upon the following equation ;
B —2p—5 = 0,
the real root of which is between 2 and 3 ; we find for the entire
values of y, ¥/, &c.
10,1, 1, 2, 1, 3, 1, 1, 12, &e.
and for the approximate values of x,

111 1355
) 53 TE

-]t
ey

3 4 31 1307 16415
1 1 49 622 WEy7T“*

enleon
)

1 4 i
b ) ) 2 759

Of Proportion and Progression.

223. AriTHMETIC introduces us to a knowledge of the defini-
tion and fundamental properties of proportion and equidifference,
or of what is termed geometrical and arithmetical proportion. 1
now proceed to treat of the application of algebra to the principles
there developed ; this will lead to several results, of which frequent
use is made in geometry.

I shall begin by observing, that equidiffererce and proportion
may be expressed by equations. Let A, B, C, D, be the four
terms of the former, and a, b, ¢, d, the four terms of the latter;
we have then

B—.A=D— C (drith. 127), 2 = ¢ (arith. 111),

equations, which are to be regarded as equivalent to the expres-
sions
A.B:C.D, a:b::c:d,

and which give

A+D=B+4+C, ad=bec
Hence it follows, that, in equidifference, the sum of the extreme
terms 1s equal to that of the means, and in proportion, the product
of the extremes is equal to the product of the means, as has been
shown in Arithmetic (127, 113), by reasonings, of which the above
equations are only a translation into algebraic expressions.

The reciprocal of each of the preceding propositions may be

easily demonstrated ; for from the equations

A4 D=B+4 C, ad="bec,

we return at once to

D—C=B—4,

~-

XNV
Il
oI
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and, consequently, when four quantities are such, that two among
them give the same sum, or the same product, as the other two, the
Jfirst are the means and the second the extremes (or the converse)
of an indifference or proportion.

When B = C, the equidifference is said to be continued ; the
same is said of proportion, when &6 = ¢.  We have in this case

A+ D=2B, ad=1"0%

that is, in continued equidifference, the sum of the extremes is equal
to double the mean ; and in proportion, the product of the extremes
15 equal to the square of the mean. From this we deduce

the quantity B is the middle or mean arithmetical proportional be-
tween / and D, and the quantity b the mean geometrical proportional
between ¢ and d.

The fundamental equations,

B—a=D—¢, =9
i a [
lead also to the following ;
C—a=D—B, °=9%
a b

from which it is evident, that we may change the relaiive places
of the means in the expressions A . B :C.D, a:b::c:d, and in
this way obtain . C:B.D, a:c::b:d. In general, we may
make any transposition of the terms which is consistent with the
equations
A4 D=DB + C and ad = bc (Arith. 114.)

I have now done with equidifference, and shall proceed to
consider proportion simply.

224. It is evident, that to the two members of the equation

b _d . .
— = ; We may add the same quantity m, or subtract it from them ;

so that we have
b d

-t m=-Fm;
a c
reducing the terms of each member to the same denominator, we

obtain
btma dxme
™) - c

Alg. 32

’
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an equation, which- may assume the form
¢ _dEme
¢ bxtma
and may be reduced to the following proportion,
bxtma:dtmc::azc;

c d . .
and as 2= ve have likewise

dxmc _(1
btma — b
or btma:dtmec::b:d.

These two proportions may be enunciated thus ;3 The first conse-
quent plus or minus s antecedent taken a given number of times, is
to the second consequent plus or minus its antecedent taken the same
number of times, as the first term is to the third, or as the second s
to the fourth.
Taking the sums separately and comparing them together, and

also the differences, we obtain

d+mc ¢ d—mec ¢

b+ma o b—ma @

whence we conclude

d4+mec __d—mc
b+ma™ b—ma’

that is,
b+ma:ddmec::b—ma:d—mec;
or rather, by changing the relative places of the means
b+ma:b—ma::d4+mc:d—mc;
and if we make m = 1, we have simply
bt+a:b—a:id4-c:d—c,
which may be enunciated thus
T'he sum of the first two terms is to their difference as the sum of
the last two 1s to their difference.
225. The proportion @ : b : : ¢ :d may be written thus;

aic::b:d;
we have then

whence
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and lastly,
ctma:dtmb::a:b or ::c:d,

from which it follows, that the second antecedent plus or minus the
Jirst taken a given number of times, is to the second consequent plus
or minus the first taken the same number of times, as any one of the
antecedents whatever is to its consequent.

This proposition may also be deduced immediately from that
given in the preceding article ; for by changing the order of the
means in the original proportion

a:b::c:d,
and applying the proposition referred to, we obtain, successively,
c::b:d,

ctma:dt=mb::e:b or ::c:d,
and denominating the letters, a, b, ¢, d, in this last proportion,
according to the place they occupy in the original proportion, we
may adopt the preceding enunciation.
Making m = 1, we obtain the proportions
‘ cxa:dxb::a:b
iic:d
ctaic—a::d+b:d—0b;
whence it appears, that the sum or difference of the antecedents s
to the sum or difference of the consequents, as one antecedent s to
its consequent, and that the sum of the antecedents is to their differ-
ence as that of the consequents 1s to their difference.
In general, if we have

L i‘:J-c l‘ &e.,
a c [ g
and make% = ¢, we shall have
d h
=0 €=q, e =0 ey

which gives
b=aq, d=cq, f=eq, h=gq, &ec.
then, by adding these equations member to member, we obtain
bt+d+f+h=aqg +cgt+eqg+gyg
or bt+d4f+h=q(at+c + e 4 g)
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whence it follows, that
brd+fth_ b
atctetg =1=5
This result is enunciated thus ; in a series of equal ratios,
a:b::cid::e:f:ig:h, &e.
the sum of any number whatever of antecedents s to the sum of a
like number of consequents, as one antecedent is to 1ts consequent.
226. If we have the two equations

b= ad L=

- = pt)

e ¢ e g
and multiply the first members together and the second together,

the result will be
bf _dh,

ae  cg’
an equation equivalent to the proportion
ae:bf::cg:dh,
which may be obtained also by multiplying the several terms of the
proportion
a:b:i:c
by the corresponding ones in the proportion
e:f::g:h
Two proportions multiplied thus term by term are said to be mul-
tiplied in order ; and the products obtained in this way, are, as
will be seen, proportional ; the new ratios are the ratios compounded
of the original ratios (Arith. 123).
It will be readily perceived also, that if we divide two propor-
tions term by term, or in order, the result will be a proportion.
2217. If we have

b _d
a” ¢’
we may deduce from it
bm ar
an = o

which gives
a™:bm i c™ i dm g
whence it follows, that the squares, the cubes, and, in general, the

similar powers of four proportional quantities are also proportional.
The same may be said of fractional powers, for, since
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m_ m _
5 V3
a :l/a’
and
d_ v
c :’}c—’
therefore,
m m
Vb __ /d
=
Ve o /e
or

m_ om_ m_ m_

Vo ia/b e fvd,
ifa:b::c:d;j thatis, the roots of the same degree of four pro-
portional quantities, are also proportional.

Such are the leading principles in the theory of proportion.
This theory was invented for the purpose of discovering certain
quantities by comparing them with others. Latin names were for
a long time used to express the different changes or transforma-
tions, which a proportion admits of. We are beginning to relieve
the memory of the mathematical student from so unnecessary a
burden ; and this parade of proportions might be entirely super-
seded by substituting the corresponding equations, which would
give greater uniformity to our methods, and more precision to our
ideas. *

228. We pass from proportion to progression by an easy tran-
sition.  After we have acquired the notion of three quantities in
continued equidifference, the last of which exceeds the second, as
much as this exceeds the first, we shall be able, without difficulty,
to represent to ourselves an indefinite number of quantities, a, b, c,
d, &c., such, that each shall exceed the preceding one, by the
same quantity J, so that

b=a+0,c=b+5d=c+ 9 e=d-+ 9 &
A series of these quantities is written thus ;
—a.b.c.d.e.f, &e.
and is termed an arithmetical progression ; I have thought it pro-

per, howerver, to change this denomination to that of progression by
differences. (See Arith. art. 127, note.)
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We may determine any term whatever of this progression, with-
out employing the intermediate ones. In fact, if we substitute for
b its value in the expression for ¢, we have

c=a-+293;
by means of this last, we find
d=a-+ 305, thene =a 4 49,

and so on ; whence it is evident, that representing by [ the term,
the place of which is denoted by n, we have

l=a+4 (n—1)0.

Let there be, for example, the progression
=~3.5.7.9.11.13.15. 17, &e.

here the first term @ = 3, the difference or ratio 6 = 2 ; we find
for the eighth term

34+ (8—1)2 =17,
the same result, to which we arrive by calculating the several
preceding terms.

The progression we have been considering is called increasing ;
by reversing the order, in which the terms are writtén, thus,

-—17.15.13.11.9.7.5.3.1.—1.—3, &ec.

we form a decreasing progression. We may still find any term
whatever by means of the formula @ 4 (n — 1) 9, observing only,
that o is to be considered as negative, since, in this case, we must
subtract the difference from any particular term in order to obtain
the following.

229. We may also, by a very simple process, determine the sum
of any number whatever of terms in a progression by differences.
This progression being represented by

—a.b.c.iiinn. A
and S denoting the sum of all the terms, we have
S=a4bdceeenenn. itk L

Reversing the order, in which the terms of the second member of
this equation are written, we have still
S=ldbadiveeennnn. +c+b+a
If we add together these equations, and unite the corresponding
terms, we obtain
2= (L) (b+8)+-(ci)ern+ (i) (o) + (14-0) 5

“but by the nature of the progression, we have, beginning with the
first term, '
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a+s=bb+8=cccee....t1+3=k k+3=1
and, consequently, beginning with the last

l— s =lkk—d=4...00.6—0=0b,b—5=ua3;
by adding the corresponding equations, we shall perceive at once,
that

at+l=0+4+%k=c+ 1 &e.
and, consequently, that
28 =n(a+1);

whence it follows, that

_n(at
S__—g—.

Applying this formula to the progression

’ +~3.5.7.9 &ec.
we find for the sum of the first eight terms
(3_+'QL)8 — 50.

230. The equation
l=a+ (n—1)g,

together with

_ @+ Dn
S§="—F5"

furnishes us with the means of finding any two of the five quanti-
tities, @, 9, n, [, and S, when the other three are known ; I shall
not stop to treat of the several cases, which may be presented.
231. From proportion is derived progression by quotients or

geometrical progression, which consists of a series of terms, such,
that the quotient arising from the division of one term by that which
precedes it, is the same, from whatever part of the series the two
terms are taken. The series

= 2: 6:18:54:162 : &ec.

“45:15: 5: Z: &:&c.
are progressions of this kind ; the quotient or ratio is 3 in the first,
and 1 in the other ; the first is increasing, and the second decreas-
ing. Each of these progressions forms a series of equal ratios, and
for this reason is written, as above.

Let
A N A A

. . . b
be the terms of a progression by quotients ; making 7 = @ wehave

by the nature of the progression,
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or b=aq,c=bq,d=cq, e=dq,...l=kq.
Substituting, successively, the value of & in the expression for ¢,
and the value of ¢ in the expression for d, &c., we have
b=aq, c=a¢® d=ag’ e=ag,...l=aq?,

taking n to represent the place of the term [, or the number of
terms considered in the proposed progression.

By means of the formula I = a ¢! we may determine any
term whatever, without making use of the several intermediate
ones. The tenth term of the progression

+2:6:18:&ec.,
for example, is equal o 2 X 3? = 39366,
232. We may also find the sum of any number of terms we
please of the progression
+a:b:c:d, &e.
by adding together the equations
b=aq, c=bqg,d=cqe=dgqg,....l=kgq;
for the result will be
bt+ctdde... +l=(+b4c+d...4+k)g;
and representing by S the sum sought, we have
b+ct+d+e....+1 =S—aq
a+b+cH+d.... +k=8—1I
whence S—a=¢q(S—1),
and, consequently,

—gl—a
§= 1=+,

+ The truth of this result may be rendered very evident, indepen-
dently of analysis. If it were required, for example, to find the sum
of the progression

+2:6:18:54:162,
multiplying by the ratio, we have

=-6:18:54:162: 486.
The first series being subtracted from this gives 486 — 2, equal to so
many times the first series, as is denoted by the ratio minus one,
that is
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In the above example, we find for the sum of the first ten terms
of the progression
+2:6:18: &c.
2 % 310 —2

2

= 310 — 1 = 59048.
233. The two equations,
l=aqv1, S=+1——

comprehend the mutual relations, which exist among the five
quantities, a, ¢, n, [, and S, in a progression by quotients, and
enable us to find any two of these quantities, when the other three
are given.

234. If we substitute a ¢™!in the place of /, in the expression
for S, we have

g legm=1)
g—1

When ¢ is a whole number, the quantity ¢" will become greater
and greater in proportion to the increased magnitude of the number
n; and S may be made to exceed any quantity whatever, by as-
signing a proper value to n, that is, by taking a sufficient number of
terms in the proposed progression. But if ¢ is a fraction, represent-

ed by - ,we have

W—l)+ am(l-———) am— mn_l
S = —_

_ m—1 m— 1
E
2 4 6418 4 54 4 162 = 3><31f?1::?,
If we multiply by the ratio ¢ the general series
“razbicidie... ... I,
we have “raq:bg:cq:dgieq..... lg.

Then, because b = a ¢, &c., the second series minus the first islqg —a,
equal to so many times the first series, as is denoted by the ratio minus
one.
H _lg—a
ence a+b+c+d+e.....+l___§:_l_.
+ Multiplying the numerator and denominator by — m.

Alg. 33
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and it is evident, that as the number n becomes greater, the tetm

—:l—__r will become smaller, and, consequent]y, the value of S will

from which it will

approach nearer and nearer to the quantity —

differ only by
a

(m—l T 3
therefore, the greater the number of terms we take in the pro=
posed progression, the more nearly will their sum approach to
am
m-+1
any assignable quantity, without ever becommg in a rigorous sense
eqnal to it.

The quantxty {» Which I shall designate by L, forms, we

It may even differ frorn by a quantity less than

perceive, a ]lmxt, to which the particular sums represented by S,
approach nearer and nearer.
Applying what has been said to the progression
SSlcirolet: ) &e

we have
1
a=1, q:;:%,
whence
am
m =2, L:m-—-l:Q;

and the greater the number of terms we take in the above ptos
gression, the nearer their sum will approach to an equality with 2.
We have, in fact,

1 =1 =2—1,
141 =3=2—14
L+3+1 =1=2—1
1+i4+i+)  =v¥=2—1
14341413 ___%%:2_71?.
&ec.

The expression for i may be considered as the sum of the
decreasing progression by quotients, continued to infinity, and it is
thus, that it is usually presented ; but in order to form a clear idea
of it, we must represent it in a limited view.
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235. We may obtain from the expression
§ = el —1)
= =T
all the terms of the progression, of which it denotes the sum ; for,
if we divide ¢" — 1 by ¢ — 1 (158), we find

m—1 1—qgn n—
%:T=T:%=1+q+f+9“+¢-~--v+7%
which gives

S=a+4aqgtaqg®>. .... +agr L

We may employ the value of L for the same purpose ; in this
case, m is to be divided by m — 1, as follows ;
m m—1
1l 1 1 1 &
R TR
1

—1+4

m
1 1
—m T
1 1
— =+ o
&ec. ‘

We begin, by dividing, according to the usual method, by the
first term, and find 1 for the quotient; we multiply this quotient
by the divisor and subtract the product from the dividend ; then,
dividing the remainder by the first term of the divisor, we obtain

1 . 1 ,
— for the quotient, and have — for a remainder ; we go through
m m

the same process with this remainder as with the preceding. Pur-
suing this method, we soon discover the law, to which the several
particular quotients are subjected, and perceive that the expressian
——— is equivalent to the series

m—1
1

m3

1414+ Ll

continued to infinity. Substituting for m its value —lq-, and multiply-

ing by a, we find as before
a+ag+ag® + ag® + &c.

for the progression of which L represents the limit.
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236. The series

U o o o o+ e

m2
is considered as the value of the fr'lctlon 1, whenever it is con-~

verging, that is, when the terms, of wlnch it is composed, become
smaller and smaller the further they are removed from the first.

Indeed, if we make the division cease successively at the first,
second, third . . . . . . remainder, we have

the quotients 1 and the remainders 1
1 1
Pt n
1 1 1
Lt T m
&e. &e.

the former of which approach the true value, exactly in proportion
as the latter are diminished ; and this takes place, only when m
exceeds unity. In all other cases we must have regard to the
remainders, which, increasing without limit, make it evident, that
the quotients are departing further and further from the true value.
To render this clear, we have only to make, successively,
m=2,m=1,m = L. Upon the first supposition, we have

e b = IS SR T BN SRRy 73

and it has been shown (234), that the series, which constitutes the
second member, approaches, in fact, nearer and nearer to 2.

The second supposition leads us to

m__ﬁl:-_%=1+1+~1+1+1+1+1&c.
This result, 1 41 4 1 4+ 1 4 1 &ec., continued to infinity, pre-
sents in reality an infinite quantity, as the nature of the expression
1 implies ; yet if we neglect the remainders in this example, we
are led into an absurdity ; for since the divisor, multiplied by the
quotient, must produce the dividend, we have
1=0+14+14+14.....)0;

but the second member is strictly reduced to nothing, we have
therefore 1 = 0, ,

The third supposition leads to consequences not less absurd, if
we neglect the remainders, and consider the series, which is obtain-
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ed, as expressing the value of the fraction, from which it is derived.
Making m = 1, we find
= —1=14244+ 8416+ &,
which is evidently false.
There will be no contradiction of this kind, if we observe, that,
in the second case, the remainders
1 1 1

Yo &ec.
are each equal to 1, and that, since they do not diminish, they can
never be neglected, to whatever extent the series is continued. 1If
we add, therefore, one of these remainders to the second member
of the equation \

I=(+4+14+14+141+......)0,
the equation becomes true. In the third case, the remainders,

1 1 1

m om® w3

&ec.

form the increasing progression, 1, 2, 4, 8, 16, &ec. and, if we add
to the several quotients the fractions, arising from the correspond=-

. . . m .
ing remainders, the exact expressions for Fogin| will be

1
1

1+ m—1

1 1
1 +1ﬁ + m (m — 1)

1 1 1
1 +E+ me + m? (m— 1)
&e.,

each of which gives — 1, when m = 1.
. m n
If we take m = — n, the fraction — becomes ey ; the

series, which is produced by developing this fraction, assumes the

form
1

1 1
1-;L+n—2——m+&c.,
and making n = 1, we have
L— 141 —141—1+4 &,
a series, which becomes alternately 1 and 0, and which, conse~
quently, as often exceeds, as it falls below, the true value of
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n_?_ T equal in this case to 1 ; but as the above series is not con-
verging, it cannot give this true value ; and we must, therefore,
take into consideration the remainder, at whatever term we stop.
If we suppose, in the preceding series, n = 2, we have
1—3 43—+ % — &,
a series, in which the particular sums, 1, 1, 3, £, &c. are, alter-

n o
nately, smaller and greater than the true value of 7 which is

n
2, but to which they approach continually, because the proposed
series is converging.

Although diverging series, that is, those, the terms of which go
on increasing, continue to depart further and further from the true
value of the expressions from which they are derived, yet consider-
ed as developements of these expressions, they may serve to show
such of their properties, as do not depend on their summation.

237. If we continue any process of division in algebra, accord-
ing to the method pursued above (235), with respect to the quan-
tities m and m — 1, the quotient will always be expressed by an
infinite series composed of simple terms. Infinite series are also
formed b); extracting the roots of imperfect powers, and continuing
the operation upon the several successive remainders; but they
are obtained more easily by means of the formula for binomial
quantities, as will be shown in the Supplement, where I shall treat
of the more common series.

Ezxamples in Arithmetical Progressions.

Let a denote the first, I the last term, n the number of terms, &
the common difference, and S the sum of an arithmetical progression.

l=a+(m—1)3, S=@+)z=QRa+(r—1)d)5

1. Givena =1, § = 1, n = 14; then Il = 14, S = 105.
2. Givena = 2, d = 3, n = 17; then l = 50, S = 442.
3. Givena =7, 0 =1}, n = 16; thenl =102, S = 142.
4, Given ¢ = 21, 0= 1, n = 100; then [ = 351, S = 1900.
5. Giveneg = 3, 0 =}, n = 26 ; then ! = 37, § = 603.
6. Given ¢ = £, 0 = 12,n = 13 then ! = 203, § = 1392.
7. Givene = — 17, § = 3, n = 8; thenl = 14, S = 28.
8. Giveng =—6,0 =%, n = 30; then [ = 153, S = 146},
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11.
12.

13.
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.Givena =1, § = —1 n=20; thenl = — 17,

S = — 132
Givena = 31, § = — 2%, n = 15} then I = — 361,
S = — 2471,
Givena =0, 9 = }, n = 11; then [ = 5, S = 271.
Givena = — 10, § = —2, n = 6 then [ = — 20,
S = —90.
Givena = — 3, 0 = — 7, n = 25; thenl = — 213,
S = — 281

Lizamples in Geometrical Progression.

Let a be the first term, ¢ the common ratio, I the last term, 17
the number of terms, and S the sum of all the terms ; then

l—a a(g"— 1
l =aqg+, S:qg—l= (;I—l ).

. Givena=1,¢=2,n="7; thenl = 64, S = 127.

2. Givena: 4, g = 3, n = 10; then I = 78732,

S = 118096.
Givenag =9, ¢ = I, n = 7; then ] = 2582213,
S = 591741

. Given ¢ = 6}, ¢ = 5, n = 8; then ] = 106423,

S = 307441,

512"

. Givena =6, ¢ = 2,n = 6; then [ = 1211, § =19274.

6. Givena = 5, ¢ = 4, n = 9; then I = 327680,
S = 436905.

7. Givena = 8, ¢ = ,n = 15; then [ = 5%,
S = 15%%§%.

8. Givena = 3}, ¢ = %, n == 8; then [ = 5309,
S = 215844

9. Givena = £, g =%, n=11; thenl = ;2580
S = 843332,

Theory of Exponential Quantities and of Logarithms.

238. In the several questions we have resolved thus far, the
unknown quantities have not been made subjects of consideration
as exponents ; this will be requisite, however, if we would deter-
mine the number of terms in a progression by quotients, of which
the first term, the last term, and the ratio are given. In fact, we
are furnished by a question of this kind with the equation
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= aq¢™1 (231),

in which n will be the unknown quantity ; abridging the expres-
sion, by making n — 1 =&, we have Il == a ¢ . This equation
cannot be resolved by the direct methods hitherto explained ; and
quantities like @ cannot be represented by any of the signs already
employed. In order to present this subject in a more clear light,
I shall go back to state, according to Euler, the connexion which
exists between the several algebraic operations, and the manner, in
which they give rise to new species of quautities.

239. Let ¢ and b be two quantities, which it is required to add-
together ; we have

a+b=c;
and in seeking @ or b from this equation, we find
a=c—0b, b=c—ua;
hence the origin of subtraction ; but when this last operation can-
not be performed in the order in which it is indicated, the result
becomes negative.

The repeated addition of the same quantity gives rise to multi-
plication ; & representing the multiplier, b the multiplicand, and ¢
the product, we have

ab =c¢
whence we obtain
a = g; b= f’i;
and hence arises division, and fractions, in which this division ter«
minates, when it cannot be performed without a remainder.

The repeated multiplication of a quantity by itself produces the
powers of this quantity ; if b represent the number of times a is a
factor in the power under consideration, we have

o =c

This equation differs essentially from the preceding, as the quan-
tities ¢ and b do not both enter into it of the same form, and hence
the equation cannot be resolved in the same way with respect to
both. If it be required to find @, it may be obtained by simply
extracting the root, and this operation gives rise to a new species
of quantities, denominated irrational 5 but & must be determined by
peculiar methods, which I shall proceed to illustrate, after having
explained the leading properties of the equation a® = ¢.
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240. It is evident, that if we assign a constant value greater than
unity to a, and suppose that of b to vary, as may be requisite, we
may obtain successively for ¢ all possible numbers. Making
b = 0, we have ¢ = 1; then since b increases, the corresponding
values of ¢ will exceed unity more and moie, and may be rendered
as great as we please. The contrary will be ihe case, if we suppose
b negative ; the equetion a® = ¢ being then changed into o= =,

1 . .
or — = ¢, the values of ¢ will go on decreasing, and may be ren-
a

dered indefinitely small. We may, therefore, obtain from the same
equation all possible positive numbers, whether entire or fractional,
upon the supposition, that a exceeds unity. The same is true, if
we have a < 1 ; only the order, in which the values stand, will be
reversed ; but if we suppose ¢ = 1, we shall always find ¢ = 1,
whatever value be assigned to b ; we must, therefore, consider the
observations which follow, as applying only to cases, in which a
differs essentially from unity.

In order to express more clearly, that a has a constant value,
and that the two otlier quantities b and ¢ are indeterminate, I shall
represent them by the letters @ and y ; we then have the equation
a® =y, in which each value of y answers to one value of x, so that
either of these quantities may be determined by means of the other.

241. This fact, that all numbers may be produced by means of
the powers of one, is very interesting, not only when considered in
relation to algebra, but also on account of the facility with which it
enables us to abridge numerical calculations. Indeed, if we take
another number #’, and designate by 2’ the corresponding value of
z, we shall have ¢* = ¥/, and, consequently, if we multiply y by
¥, we have

yy = a* X & = a*t”;
if we divide the same, the one by the other, we find

! z!
y @ .
= =a H

y @
lastly, if we take the m™ power of y, and the n* root, we have
ym — (az )m = a™

for the one, and

-
LI

1
P=(F)r=a
for the other.

Alg. 34
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It follows from the first two results, that knowing the exponents
x and 2’ belonging to the numbers y and ¢/, we may, by taking
their sum, find the exponent which answers to the product y ¥/,
and by taking their difference, that which answers to the quotient
g—l. ~ From the last two equations it is evident, that the exponent
belonging to the m'* power of y may be obtained by simple multi-
plication, and that which answers to the nt root, by simple division.

Hence it is obvious, that by means of a table, in which, against
the several numbers y, are placed the corresponding values of x, y
being given, we may find @, and the reverse ; and the multiplica-
tion of any two numbers is reduced to simple addition, because,
instead of employing these numbers in the operation, we may add
the corresponding values of @, and then seeking in the table the
number, to which this sum answers, we obtain the product requir-
ed. The quotient of the proposed numbers may be found, in the
same table, opposite the difference between the corresponding
values of , and, therefore, division is performed by means of sub-
traction.

These two examples will be sufficient to enable us to form an
idea of the utility of tables of the kind here described, which have
been applied to many other purposes since the time of Napier, by
whom they were invented. The values of « are termed logarithms,
and, consequently, logarithms are the exponents of the powers, to
which a constant number must be raised, in order that all possible
numbers may be successively deduced from 1.

The constant number 1s called the base of the table or system of
logarithms.

I shall, in future, represent the logarithm of y by 1y ; we have
then x = ly, and since y = o, we are furnished with the equa-
tion y = al.

242. As the properties of logarithms are independent of any
particular value of the number a, or of their base, we may form an
infinite variety of different tables by giving to this number all pos-
sible values, except unity. 'Taking, for example, ¢ = 10, we
have y = (14,", and we discover at once, tiat the numbers

1, 10, 100, 1000, 10000, 100000, &c.,
which are all powers of 10, have, for logarithms, the numbers
o, 1, 2 3 4, 5 &



Theory of Exponential Quantities and of Logarithms. 267

The properties mentioned in the preceding article may be veri-
fied in this series; thus if we add together the logarithms of 10
and 1000, which are 1 and 3, we perceive, that their sum, 4, is
found directly under 10000, which is the product of the proposed
numbers.

243. The logarithms of the intermediate numbers, between 1
and 10, 10 and 100, 100 and 1000, &c. can be found only by
approximation. To obtain, for example, the logari}hm of 2, we
must resolve the equation (10)* = 2, by the method given in art.
221., finding first the entire number approaching nearest to the
value of . It is obvious at once, that x is between 0 and 1, since

(10)° = 1, (10)! = 10; we make therefore = 2, the equation

X
then becomes (10)* = 2, or 10 = 2*; now z is found between 3

1
and 4 ; we suppose, therefore, z = 3 + pot and hence °

gl 1 1
10 =2 =28 x ¥ =g x o7
- 1
or ==
or, lastly,
2 = (3.
As the value of 2/ is between 3 and 4, we make
1
2 =38 4 ;/—;;
we have then
1 1
H7 am
2=(3) " =GP
whence we obtain ¢
1, y
(' =2(4)° =138 or (338)” = §;

and after a few trials we discover that 2 is between 9 and 10.
The operation may be continued forther ; but as I bave exhibited
this process merely to show the possibility of finding the logarithms
of all numbers, T shall confine myself to the supposition of 2/ = 9;
we have then, going back through the several steps,

/ — 28 > — 93 —_
=%, =353 T =

as it gives
z = 0,30107.
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By calculations carried to a greater degree of exactness, it is found,
that

z = 0,3010300,
the decimal figures being extended to seven places.

Regarding this value of  as an exponent, we must conceive
the number 10 to be raised to the power denoted by the number
3010300, and the root of the result to be taken for the degree
denoted by 10000000 ; we thus arrive at a number approaching

. 3010300
very neaily to 2 ; that is (10)79°7°%97 — 2, very nearly; the first

* The method explained in this article becemes impracticable,
when the numbers, the logarithms of which are required, are large ;
another method, however, which may be very useful, is given by
Long, an English geometer, in the Philosopkical T'ransactions for the
year 1724, No. 339.

As the process for determining z in the equation (10)z = y is
very laborous, we may, reversing the order, furnish ourselves with the
several expressions for z, then forming a table of the values of y cor-
responding to those of 2, we shall afterwards, as will be perceived, be
able, in any particular case, to determine z by means of y.

We take first for = the values co:nprehended between 0,1 and 0,9 ;
we have then only to determine the value of y, which answers to

z=0,1, or (IO)T%, because the several other values of 7, namely,
(10)77, (10)™, &e.

are the 24, 34, &c. powers of the first.

By extracting the square root, we discover at once, that

10} or (10)™" = 3 162277660 ;
then taking the fifth root of this result, we have
(10)75 = 1,258925412.
By a similar process, we deduce from ‘

(10T = 1,258025412,
the value of

1 1 _5_
\, (10)™0 = (10)%7 = (10)7°7 = 1,122018454 ;
then taking the fifth root, we have
(10)T¥5 — 1,023202902 ;
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244. By multiplying the logarithm of 2, successively by 2, 3, 4,
&c., we obtain logarithms of the numbers, 4, 8, 16, &c., which are
the 24, 3¢, 4th, &c. powers of 2.

and raising the result to the 24,34, . ..., 9th powers, we obtain the
values of y, corresponding to those of z comprehended between 0,01

and 0,09.

It will be readily seen, that by this method, we may also find the
values of y for those of z between 0,001 and 0,009, between 0,0001

and 0,0009; thus we shall be furnished with the following table.

Log. | Nat. Num. | Log.¥ |_k Nat. Num.
0,97,943282347 0,00009/1,000207254
© 86,309573445, 8(1,000184224
715,0118723:36 7/1,00016 1194
6/3,981071706 6(1,000138165
5(3,162277660] 5(1,000115136
412,511836432 4|1,000092106
3(1,995262315 3(1,000069080
2 1,584893193i 2(1,000046053
11,258925412 1{1,000023026
0,09(1,230268771] 0,000009|1,000020724
81,202264435| 8/1,000018421
7|1,174897555! 7/1,000016118
6/1,148153621 6(1,000013816
51,122018454 5(1,000011513
4/1,096478196 4/1,000009210
3/1,071519305] 3(1,000006908
2/1,047128548 2/1,000004605
1/1,023292992| 1{1,000002302
0,009(1,020939484] 0,0000009{1,000002072
8(1,018591388 8(1,000001842
711,016248694 7(1,000001611
6(1,013911386 6/1,000001381
5(1,011579454 5(1,000001151
4/1,009252886 411,000000921
3(1,006931669| 3(1,000000690
2(1,004615794 2(1,000000460
1/1,002305238 1/1,000000230
0,0009!1,002074475{0,00000009(1,000000207
8/1,001843766 8|1,000000184
7/1,001613109 711,000000161
6{1,001382506 6(1,000000138
5(1,001151956) 5/1,000000115
4/1,000921459 4/1,000000092
3/1,000691015, 31,000000069
2/1,000460623 2/1,000000046
111,000230285 1{1,000000023

By means of this table, we may find the logarithm of any number

whatever, by dividing it by 10 a sufficient number of times.

To
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. By adding to the logarithm of 2 the logarithms of 10, 100,
1000, &c. we obtain those of 20, 200, 2000, &c. ; it is evident,
therefore that if we have the logarithms of the former numbers, we

obtain, for example, the logarithm of 2549, we first divide this num-
ber by (10)3 or 1000, which is the greatest power of 10 it contains;
we have then

2549 = (10)® X 2,549;
we then seek in the table the power of 10 immediately below 2,549,
and find

(10)04 =2,511886432 ;
dividing 2,549 by this last number, we have

2,549 = (10)%¢ X 1,014775177,

Again seeking in the table the power of 10 immediately below
1,014775177, we find

(10)0006, — 1,013911386 ;
then dividing the preceding quotient 1,014775177 by this number, we
obtain a third quotient 1,000851742. This process is to be continued,
until we arrive at a quotient, which differs from unity only in those
decimal places we propose to neglect.

If we consider, in the present case, the third quotient as equal to
unity, the proposed number will be resolved into factors, which will
be powers of 10, for we shall have '

2549 = (10)3 X (10)%* X (10)0:006 — (10)3,406,
from which it is evident, that 3,406 is the logarithm of the number
2549. By extending the divisions to 7 in number, this logarithm will
be found to be 3,406369.

The same table enables us with still more ease to find a number by
means of its logarithm, as in the following example.

Let 2,547 be the given logarithm ; the number sought will be

(10Y2547 = (10)2 X (10)%5 X (10)00:4 % (10)%007 ;
it will, therefore, be equal to the product of the numbers
(102 = 100,
(10)%5 = 3,162277660,
(10)%04 — 1,096478196,
(10)0007 — 1,016248694,
taken from the table ; and will, consequently, be
2,547 = 1. 352,357.

A table of the same kind with the above, but much more extended,
has been published in England, by Dodson, the object of which is to
furnish the means of finding the number answering to a given loga-
rithm.
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may find the logarithms of all numbers composed of them, which
latter can be only powers or products-of the former. The number
210, for example, being equal to

2X3X5xH1,
its logarithm is equal to

12 +13 415417,
and since 5 = 1, we have
15 =110—12.

245. Logarithms, which are always expressed by decimals,
are composed of two parts, namely, the units placed on the left
of the comma, and the decimal figures found on the right. The
first of these is called the characteristic, because in the logarithms
under consideration, which are adapted to the supposition of
a@ = 10, and which are called common logarithms, this part shows
to what order of units the number corresponding to the loga-
rithm belongs. The several logarithms of the numbers between
1 and 10, as they are between O and 1, have, necessarily, O for
their characteristic ; those of the numbers between 10 and 100,
have 1 for their characteristic ; those of the numbers between
100 and 1000 have 2; in general, the characteristic of a loga-
rithm contains as many units, as the proposed number has figures,
minus one.

246. It is important also to remark, that the decimal part of the
logarithms of numbers, which are decuple the one of the other, is
the same ; for example,
the logarithm of 54360 is  4,7352794,

5436 3,7352794,
543,6 2,7352794,
54,36 1,7352794,
5436 0,7352794 ;
for, as each of these numbers is the quotient of that which precedes
it, divide{ by 10, the logarithm of the one is found by taking an
unit from the characteristic of that of the other (241,242).

247. According to what has been said in art. 240., the logarithms
of fractional nu.ubers are, upon our present hypothesis, negative ;
and we may easily deduce tliem from those of entire numbers,
if we observe that a fraction represents the quotient arising from
the division of the numerator by the denominator. When the
numerator is less than the denominator, its logarithm is also less
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than that of the denominator, and, consequently, if we subtract the
latter from the former, the result will be negative.

In order to obtain the logarithm of the fraction 1, for example,
we subtract from 0, which denotes the logarithms of I, the fraction
0,3010300, which represents that of 2 ; the result is

— 0,3010300.

If we subtract from O the number 1,3010300, which is the logarithm
of 20, we have the logarithm of 2, equal to
—1,3010300.
The logarithm of 3 being 0,4771213, that of 2 will be
0,3010300 — 0,4771213 = — 0,1760913.

248. It is evident from the manner in which the logarithms of
fractions are obtained, that, considered independently of their
signs, they belong (241) to the quotients, arising from the division
of the denominator by the numerator, and, consequently, answer to
the number, by which it is necessary to- divide unity in order to
obtain the proposed fraction. Indeed, 2, for example, may be

exhibited under the form é’ and 12 =13 —12 = 0,1760913.

It would be inconvenient, in order to find the value of a fraction,
to which a given negative logarithm belongs, to employ the number
to which the same logarithm answers when positive, since it would
be necessary to divide unity by this number ; but if we subtract
this logarithm from 1, 2, 3, &c. units, the remainder will be the
logarithm of a number, which expresses the fraction sought, when
reduced to decimals, since this subtraction answers to the division
of the numbers, 10, 100, 1000, &c. by the number to which the
proposed logarithm belongs.

Let there be, for example, — 0,3010300 ; if, without regarding
the sign, we take this logarithm from 1, or 1,0000000, the re-
mainder, 0,6989700, being the logarithm of 5, shows, that the
fraction sought is equal to 0,5, since we supposed unity to be
composed of 10 parts.

If, in seeking the logarithm of a fraction, we conceive unity to
be made up of 10, or 100, or 1000, &c. parts, or which amounts
to the same thing, if we augment the characteristic of the loga-
rithm of the numerator by a number of units sufficient to enable us
to subtract that of the denominator from it, we obtain in this way a
positive logarithm, which may be employed in the place of that
indicated above.
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In order to introduce uniformity into our calculations, we most
frequently augment the characteristic of the logarithin of the nume-
rator by 10 units. If we do this with respect to the fraction £, for
example, we have

10,3010300 — 0,4771213 = 9,8239087.

It will be readily seen, that this logarithm exceeds the negative
logarithm — 0,1760913 by 10 units, and that, consequently,
whenever we add it to others, we introduce 10 units too much
into the result; but the subtraction of these ten units is easily
performed, and Dby performing it we effect at the same time the

-subtraction of 0,1760913. Let N be the number, to which we
add the positive logarithm 9,8239087 ; the result of the operation
will be represented by

N+ 10 —0,1760913.
and if we subtract 10, we have simply
N — 0,17609183.

According to the preceding observations, we cause addition to
take the place of subtraction, by employing, instead of the number
to be subtracted, its arithmetical complement, that is, what remains,
when this number is subtracted from one of the numbers, 10, 100,
1000, &c., a result which is obtained by taking the units of the
proposed number from 10 and the several other figures from 9,
We add this complement to the number, from which the proposed
logarithm is to be subtracted, and from the sum subtract an unit of
the same order as the complement.

It is evident, that if the complement is xepeated several times,
we must subtract, after the addition, as many units of the same
order with the complement, as there are in the number, by which
it is muliiplied ; and, for the same reason, if several complements
are employed, we must subtract for each an unit of the same order,
or as many units as there are complements, if they are all of the
same order.

Sometimes this subtraction cannot be effected ; in this case, the
result is the arithmetical complement of the logarithm of a fraction,
and answers in the tables to the expression of this fraction reduced
to decimals.  If 10 units remain to be taken fro‘m the characteris-
tic, as is most frequently the case, the result is the same as if we had
maltiplied by 10000000000, the numerator of the fraction sought,
in order to render it divisible by the denominator; the character-

Alg. 35
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istic of the logarithm of the quotient shows the highest order of the
units contained in this quotient, considered with reference to those
of the dividend. In 9,8239087, the characteristic 9 shows, that
the quotient must have one figure less than the number, by which
we have multiplied unity ; and, consequently, if we separate 10
figures for decimals, the first significant figure on the left will be
tenths ; and we shall find only hundredths, thousandths, &c., for
the numbers the arithmetical complements of which have 8, 7, &c.
for their characteristics.

249. What has been said respecting the system of logarithms, in
which @ == 10, brings into view the general principles necessary
for understanding the naturc of the tables; for more particular
information the learner is referred to the tables themselves, which
usually contain the requisite instruction relating to their arrange-
ment and the method of using them. I will merely mention the
tables of Callet, stereotype edition, and those of Borda, as very
complete and very convenient.

250. If we have the logarithm of a number y for a particular
value of a, or fora particular base, it is easy to obtain the logarithm
of the same number in any other system. If we have o®@ = y;
for another base 4, we have /I* = y, X being different from « ;
hence we deduce * == a®. Taking the logarithms according to
the system, the base of which is a, we have

1A4* =1la%;
now 1l a* = « by hypothesis, and 1 .4* = X1 (241) ; therefore,
XA =a, or X = %; but if we consider .4 as a base, X will

be the logarithm of ¥ in the system founded on this base ; if, there-
fore, we designate this last by Ly, in order to distinguish it from
the other, we have

Ly = :—‘VII,
and we find the logarithm of y in the second system, by dividing 1ts
logarithm taken in the first by the logarithm of the base of the
second system.

. . . 1 Sy e
The preceding equation gives also L_.Z = 145 from which it is
evident, that whatever be the number y, there is between the loga-

rithms 1 y and L y, a ratio invariably represented by 1.
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251. In every system the logarithm of 1 is always O, since
whatever be the value of @ we have always a® = 1. As logarithms
may go on increasing indefinitely, they are said to become infinite
at the same time with the corresponding numbers ; and as, when y

. . 1 .. .
is a fractional number, we have y = &= =%, it is evident, that

in proportion as y becomes smaller,  in its negative state becomes
greater, but we can never assign for  a number, which shall ren-
der y strictly nothing. In this sense it is said, that the logarithm
of zero 1s equal to an infinite negative quantity, as we find in many
tables.

252. I now proceed to give some examples of the use, which
may be made of logarithms in finding the numerical value of for-
mulas. It follows from what is said in art. 241., and from the
definition of logarithms, by which we are furnished with the equa-
tion a% = v, that

1(4B) =14 4+ 1B, ‘1(%):].&—-13,
14» =mld, 14* =14

Applying these principles to the formula
A% /B (R

5 2
C VI3 EF
which is very complicated, we find
|(2 V=) = | [ B B0 =
214 + 31(B + C) + 31(B— 0),

5
1(Co/DFEF)=1C + 21D 4 11E 4 L1F,
and, consequently,
A B —C2
1 (-——-5————) = .
C vD3EF

214+ 1 1(B+ )+ 31(B—C)—1C—31D—11E—}IF.
If we take the arithmetical complements of 1 C, 21.D, 1 1E, 311F,
designating them by C’, I, E’, F', instead of the preceding
result, we have

2144+ (B+C)+11(B—O+C +D+E4 P,
only we must observe to subtract from the sum as many units of
the same order with the complements, as there are complements
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taken, that is 4. When we have found the logarithm of the pro=
posed; formula, the tables will show the number, to which this
logarithm belongs, which will be the value sought.

253. Logarithms are of the most frequent use in finding the
fourth term of a proportion. It is evident, thatif a: b::¢c: d we
have

d= c, whence 1d =10 4+ 1c—1la;

that is, the logarithm of the fourth term sought is equal to the sum
of the logarithms of the two means, diminished by the logarithm of
the known extreme, or rather, to the sum of the logarithms of the
means, plus the arithmetical complement of the logarithm of the
known extreme.

254. If we take the logarithms of each member of the equation

b__d . .
— = —, which presents the character of a proportion, we have
a ¢

1b —la=1d —1c¢(252);
whence it follows, that the four logarithms
a.lb:lc.1d

form an equidifference (223.)
The series of equations,
g = % = g , &e. (23[)
leads also to
1b~la=1l¢c—1b=1d—1lc=1e—14d, &ec.,
and hence we infer, that the progression by quotients,
a:b:ic:d:e &e.
corresponds to the progression by differences,
“—la.lb.lc.1ld.le, &ec.,

and, consequently, the logarithms of numbers in progression by
quotients, form a progression by differences.

255. If we have the equation 0* = ¢, we may easily resolve it
by means of logarithms ; for as 18* is equal to 215, we have

le . z
21b = l¢, and, consequently, z = 2 The equation & = d may
be resolved in the same manner ; making ¢’ = u, we have

ld 1d
b =d, ulb=1d, U= O €=
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#gain taking the logarithms, we find

1d
z1c=1(n>=11d—1lb and

11d—115b
=

lc :

In this last expression, 115 represents the logarithm of the loga=
rithm of 4, and is found by considering this logarithm as a number.

z
The quantities, 6%, b°, and all which are derived from them, are
called exponential quantities.

Application to finding the Logarithms of Literal Expressions.

1. logfg_logf—l—lovg—-—logc—-]ogd
2. log a™b" ¢» = m log a 4 n log b 4 p log c.
8. log c:::I;_q-n._mlogaz—nlogb—plogc—qlogd.

m
4. log a* b ‘Ic‘—_*;b—loga——logb—{—logc

11 m P

5. log Ja’“b" = loga—log b +;qlog ¢
6. log ab\:/ = log «+ logc—logb——%logd.
7. log(—a—i-b)—f:nlog (a + ) 4 m log c—log (c 4 d)

(c+d)va

— 2 log d.
1

8. IOgm mlob (d+ bn)
9. log—n——l———=-——7—llog(a+b).

v(a+0)

"
10. log V(ag—a?)_—_‘,l;log (¢ + 2) —|——1"—‘~log (2 — ).
11. z log a = log a*.
12. nloga + mlog b — p log ¢ = log— nbm
13. nlog (a 4+ y) + log c —m log (a — y) = log 6((:-}—;)2:.
14.510g(2a+36)— logc_logV(2a+3b)

Nz
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Application to finding the Logarithms of Numerical Expressions.

1
2
5
4
5.
6
7
8
9

10.
11.
12.
13.

14.
15.
16.

17.

2.

. lo

® 3o

. log (93 X 3514) = 5.51428.
. log' (628 X 493) = 5.49080.
. log £ = 0.09691.

. log 3 = 0.74596.

log ¥* = 0.66900.

. log 152 = 1.19728.

319 X 765

g —i3g = 3.24757.

. log 31 = 7.15681.
. log 5% = 18.87219.

log (2) = 5.15167.
log (12)® = 12.16675.
log +/5 = 0.34948.

log 4/73567 = 2.43334.

3

log 4/135 = 0.71011.
100

log 4/13 = 0.011139.
7

log N/E = 0,08200.

Iov (954)‘2 = 2.10321.

Calculation of Numerical Expressions by Logarithms.

7
.48 =1.34590. ...

4
V3956 = 13.70179 . . . .

5
13 = 095932 . . ..

17l = 1.19074 . ...

'y

]
o

L5 ~

a3es = 1.14605 .
9 = 11.86322 . ...
24)° = 11767.35 .
343)™ = 3.16810. . ..

/\f'\/-\
I°°'
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5
9. V(3 v/6) = 1.20569 . . . .

10. 253 Z}E_ﬁ = 2016.914 ...
V2

8 6
11. 4/(21 4 4/19) = 1.4768 ....

Questions relating to the Interest of Money.

256. TuE principles of progression by quotients and of loga-
rithms will be found to occur in the calculations relating to interest.
To uaderstand what I have to offer on this subject it must be recol-
lected, that the income derived from a sum of money employed in
trade, or in executing some productive work, will be in proportion
to the frequency with which it is exclianged in either case. Hence
it follows, that he, who borrows a sum of nioney for any purpose,
ought, upon returning this money at the expiration of a given time,
to allow the lender a premium equivalent to the profits, which he
might have received, if he had employed it himself. Such is the
view in which the subject of interest presents itself. In order to
determine the interest of any sum, we compare this sumn with 100
dollars taken as unity, having fixed the premium, which ought to
be allowed for this last at the end of a particular term, one year for
example. I shall not here consider those things, which, in the
different kinds of speculation, occasion the rise and fall of interest ;
this belongs to the elements of political and commercial arithmetic,
which should be preceded by some account of the doctrine of
chances. My object in what follows is simply to resolve certain
questions, which refer themselves to progression by quotients.

To present this subject in a general point of view, I shall sup-
pose the annual premium, allowed for a sum 1, to be represented
by 7, r being a fraction ; it is evident, that the interest of a sum
100, for the same time, will be 100 7, that of any sum whatever a
will be denoted by a r; if we designate this last by «, we have

a——=ar.

By means of this formula, it is easy to find the interest of any sum
whatever, when that of 100 or of any other sum, for a known time,
is given ; questions of this kind belong to what is called simple
interest.

257. But if the lender, instead of recieving annually the interest
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of his money, leaves it in the hands of the borrower to accumulate,
together with the original sum, during the following year, the value
of the whole at the end of this year may be found in the following
manner. The original sum being a, if we add to it the interest
ar, it becomes at the end of the first year
atar=qa(l 4 1)

Now if we make

a(l +7) =d,
the interest of the sum o for one year being o’ r, that of the sum
a (1 + ) will be, for a second year, a7 (1 4 7); and as, at the
end of the first year, the principal @ augmented by the interest,
becomes a (1 -+ r), the principal o’ amounts at the end of the
second year, to _

d(l4r)=al 4+ r)® =0
If the lender does not now withdraw the sum a”, but leaves it to
accumulate during a third year, at the end of this, it will become,
according to what precedes,
o' (14 7)=a(l 4 r)® = a”.
It will be readily perceived, that ¢’/ will become at the end of the
fourth year
a’ (1 471) =a(l + r)
and so onj; and that, consequently, the sum first lent, and the
several sums due at the end of the first, second, third, fourth, &ec.
years, form the following progression by quotients
Fara(tdr)ia(l+rPia(l +7)Pra(l 4 r)*: &e.

of which the quotient is I 4 r, and the general term

a(l 4 )" = 4,
the number n representing the number of years, during which the
interest is suffered to accumulate,

If the rate of interest be 5 per cent., for example, that is, if for
100 dollars during one year 105 dollars are paid back ; we have
100r =5, or r= 35 =4 and 14 r =21

If we would know to what the sum a amounts, when left to accur
mulate during 25 years, we have

21\ %
n = 25, and a(§0

instead of the original sum. The 25th power of 21 may be easily
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found by means of logarithms, since we have (252)
21\ 25
1(5) = 2513k =25 (121 —120) = 0,5297322,
which gives

21\ 25
(‘W)) = 3,386 nearly, A = 3,3864a;

and hence it may be readily seen, that 1000 dollars will in this
way amount at compound interest to 3386 dollars, at the end of
25 years.
If the sum lent were for 100 years, we should have
100
A=ua (gflj) =13la

nearly ; thus 1000 dollars would produce, at the end of this pe-
riod, a sum of 131000 dollars nearly. These examples will be
sufficient to show with what rapidity sums accumulate by means of
compound interest.

258. The equation

A=a(l 47"
gives rise to four questions; the first, which is to find /2, when
a, r, and n, are known, presents itself, whenever we seek the
amount of the principal at the end of a number n of years. I
have already given an example of this.

The sccond, which is to find r, when @, A, and n, are known,
occurs whenever it is required to d~termine the rate of interest by
means of the original sum, the whoie amount that has become due,
and the time during which it has peen accumulating; we have in

this case
n —
147 =J/_1.
a

The third, which is to find a, when A, r, and n are known, the
formula for which is

o=
T (4
has for its object to determine the principal, which it is necessary
to employ in order to be entitled after a number n of years, to a
sum /.
The fourth, which is to find 22, when 4, @, and r are known,
can be resolved only by means of logarithms (238, 252). Taking
Alg. 36
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the logarithm of each member of the proposed equation, we have

lAd=1a4nl(l 4 7),
whence
14—1a
n= s
By means of this last equation we determine how many years the
principal @ must remain at interest in order to amcunt to a sum J/1,
To illustrate this by an example, I shall suppose that it is re-
quired to find the time in which the originél sum will be doubled,
the rate of interest being 5 per cent. ; we have

A=2a 14=la+12,
and, consequently,

12 12 0,3010300
31~ 120120 — 0,0211893

= 14,21,

nearly.

259. The following question is one of the most complicated,
that we meet with relating to this subject. We suppose, that the
lender during a number n of years, adds each year a new sum,
to the amount of this year ; it is required to find what will be the
value of these several sums, together with the compound interest
that may thence arise at the expiration of the term proposed. Let
a, b, ¢, d, . . . .k, be the sums added the first, second, third,
fourth, &ec. years; the sum @ remaining in the hands of the bor-
rower during a number n of years, amounts to

a(l4r)";
the sum &, which remains n — 1 years only, becomes
b(1 4 7)™,
the sum ¢, which remains n — 2 years only, becomes
c(14r)m2,
and so on; the last sum, %, which is employed only one year,
becomes simply
k(1 +1);

we have, therefore,
A=a(l + )"+ b (L4 e (L +r)"2. ... +&(1 + 7).

By calculating the several terms of the second mumber separately,
we obtain the value of A.
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The operation is very much simplified- when
o=b=c=d.....=k
for in this case we have
A=a(l +r)*+a(l +r) a1 472 ... Fa(l47);
the second member of this equation forms a progression by quo-
tients, of which the first term is @ (1 4~ r), the last term a (1 4 )7,
the quotient 1 »- 7, and the sum, consequently,

o (L4-r)H —a(l4-1) (282);

r

we have, therefore, in this case,
4= a0 [(rr—1]
r

This equation gives rise also to four questions corresponding to
those mentioned in connexion with the equation
A=a(l+4r)

260. By reversing the case we have been considering, we may
represent those annual sums, or sums due at stated intervals,
called annuities ; here the borrower discharges a debt with the
interest due upon it, by different payments made at regular peri-
ods. These payments, made by the borrower before the debt
in question is discharged, may be considered, as sums advanced
to the lender toward the discharge of the debt, the value of
which sums will depend upon the interval of time between the
payment and the expiration of the annuity. Thus, if we repre-
sent each sum by a, the first payment, which will take place
n— 1 years before the expiration of the term of the annuity,
referred to this time, is worth @ (1 4~ r)*~! ; the second referred
to the same epoch, is worth only a (1 4 r)*2; the third,
a(l 4+ r)»3, and so on to the last, which amounts only to the
value of «. But on the other hand, the sum lent being represented
by A, will be worth in the hands of the borrower, after n years,
A (1 4 7)", which must be equal to the amount of the several
payments advanced by him to the lender; we have, therefore,
AL rr=a(t+ 0=+ a (L4 a(l o). o,
or taking the sum of the progression, which constitutes the second
member
+ry—1]

—

r

A4 =20
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an equation, in which we may take for the unknown quantity, suc-
cessively, the quantity 2, which I shall call the value of the annu-
ity, because it is the sum, which it represents, the quantity a,
which is the quota of the annuity, the quantity », which is the rate
of interest, and lastly, the quantity n, which denotes the term of
the annuity. In order to find this last we must have recourse to
logarithms. We first disengage (1 4 r)*, which gives

o a
(L tn= a— 47
then taking the logarithms, we have
nl(l 4+7)=1a —1(a—dr),

whence
la—1(a— A7)
="Tu¥n

261. To give an instance of the application of the above for-
mulas, I shall take the following question ;

To find what sum must be paid annually to cancel in 12 years a
debt of 100 dolls. with the interest during that time, the rate of
wnterest being 5 per cent.

In this example the quantities given are

1
20’
and the annuity a is required to be found ; resolving the equation

A =100, »n =12, r =

A(1 4 ) = LA E 0 —1]

r
with reference to the letter a, we have
0= Ar (14
T (4 —1
The values of the letters, A, 7, and n, are to be substituted in this
expression 3 and it will be found most convenient in_the first place
to calculate, by the help of logarithms, the quantity (1 +4 7)®,
which becomes (31)¥; and
(31)2 = 1,79556.
By means of this value we obtain
100 . % . 1,79586 _ 5.1,79586
= "7179586 —1 — 0,79586 ’
and, determining the values of this last expression either directly

or by means of logarithms, we find
a = 11,2826




Formulas relating to Annuities. 285

an annuity of 11,28 dolls., therefore, is necessary to cancel in 12
years a debt of 100 dolls., the rate of interest being 5 per cent.
262. I am prevented from entering into farther details on this
subject by the limits I have prescribed myself in this treatise ; I
will merely add, therefore, that in order to compare the values of
different sums, as they concern the person, who pays or receives
them, they must be reduced to the same epoch, that is, we must
find what they would amount to when referred to the same date.
A banker, for instance, owes a sum @ payable in n years; as an
equivalent he gives a note, the nominal value of which is repre-
sented by b, and which is payable in p years, the first sum at the

. . . a .
time the note is given, is worth only TF because it must be

considered as the orizinal value of a principal, which amounts to @
at the expiration of n years; the sum b, for the same reason, is

rorth at the time t} te is gi b ; the diffe
worth a 1€ time tie note 1s glven (l + 7-)p H 1€ dilrerence

a b
T TFp
represents, therefore, according as it is positive or negative, what
the banker ought to give or receive by way of balance ; if this bal-
ance is not to be paid until after a number of years denoted by ¢,
¢ representing its value at the time the exchange is made, it will
amount at the expiration of this term, to

c (1 4 7))
so that it will be equivalent to
a b o _
((1 —|-—7')" —(1 +,.)p> (1 + T)q:a(l +r)q _b(l +r)q 2.
The several sums, a, b, .. ... ky in art. 259., were reduced to

the time of the payment of the sum /2, and in art. 260., each of the
paymeats, as well as the sum J, was referred to the time, when
the annuity was to cease

Questions relating to Interest and Annuities.

1. A capital of 5000/. stands at 4 per cent. compound interest.
What will it amount to in 40 years ? Ans. 24005.103/.

2. What will 3200l. amount to at 3 per cent. in 80 years ?
Ans, 34050.841.
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3. How long must a capital & remain at the interest p to become
as much as a capital o at the interest p’ for n years?
Ans. log @' + n log p’ — log a
log p
4. How long must 3600l remain at 5 per cent. compound

interest so that it may becomne as much as 5000/. at 4 per cent. for
12 years? JAns. 16 years, nearly.

5. What is the amount of capital which at the interest p for »
years is of equal value with a capital  for n’ years at the interest
P Ans. log @ = log o/ 4 o/ . log p’ — n log p.

6. What is the amount of a capital which stands at 4 per cent.
that 15 years hence it may be equal in value with 45001. at 6 per .
cent. for 9 years ? Ans. 42211., nearly.

7. What is the rate of interest that a capital ¢ in n years may
be equal to a capital @’ in n’ years at the interest p/ ?

log a' 4+ n' log p/ — log a
" .

years.

Ans. log p =

8. How long must a capital stand at 4 per cent. cempound
interest that it may double itsell’; and how long that it may be
tripled.

Ans. Tt doubles itsell in between 17 and 18 years, and triples
itself in between 28 and 29 years.

9. An usurer lent a person 600l. and drew up for the amount a
bond payable in 3 years bearing no interest. What did he take
per cent. reckoning compound interest ?

Ans. 10 per cent., nearly.

10. A capital of 800l increased in the space of 6 years to

3600/. What did it gain per cent.?
Ans. 283 per cent., nearly.

11. A person enjoys an annuity of 5000, for six years. How
much ready money can a person give him for this annuity, calcu-

lating 31 per cent.? Ans. 26641, 5s. 10d.
12. What is the present value of an annuity of 350/ assigned
for 8 years at 4 per ceut. ? Ans. 23561 9s. 2d., nearly.

13. A debt due at this present time amounting to 1200l is to
be discharged in seven yearly and equal payments. What is the
amount of these payments if the interest be calculated at 4 per
cent.? Ans. 2001., nearly.

14. A person wishes to obtain an annuity of 20001. for 345801
For how many years can this annuity be granted him, computing
the interest at 4 per cent. ? Ans. About 30 years.



NOTES.

(Referred to Page 86.)

In articles 66 and 75 I have interpreted the negative solutions by
the examination of the equation, which they immediately verify, as I
had done before, and this method appeared to me always exact, as
the object is merely to show, that these solutions have a rational
sense, since they resolve questions analogous to the one proposed;
but there are often several ways of forming these questions, and the
following, which was communicated to me by M. Francais, a distin-
guished geometer, Professor at the School of Artillery of Mayence,
seemed to me more simple, than that given in these Elements.

¢« He thinks, that we ought to leave out of the enunciation of the
question of art. 65. the idea of the departure of the couriers, and to
suppose them to have been travelling from an indefinite time; the
question then would be stated thus. Two couriers travel the same
route in the same direction C' A B C (page 77); after they have prog
ceeded, each a certain time, one finds himself in A at the instant that
the other is in B their distance and ratec of going are known ; it is
asked at what point of the route they will cncounter each other ?

This enunciation leads to the same equation, as that of art. 65. ;
but ¢ the continuity of the motion being once established, the nega-
tive solution admits of an explanation without the necessity of chang-
ing the direction of one of the couries. Indeed, since their motion
does not commence at the points A and B, but both, before arriving
at these points, are supposed to have been going in the same manner
for an indefinite time from C' toward B, it is easy to conceive, that
the courier, who at this point is in advance of the one at A, who
travels slower, must at a certain time have been behind him and over-
taken him before his arrival at the point A. The sign — then indi-
cates (as in the application of Algebra to Geometry) that the distance
AR’ is to be taken in a direction opposite to AR, which is regarded
as positive. The change to be made in the enunciation, to render
the negative solution positive, is reduced to supposing, that the two
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couriers must have come together before their arrival at the point 4,
instead of its taking place afterward.”

Indeed, when we place the point R’ between A and C, instead of
putting it between A and B, we find AB — BR' — AR’, whence
results the equation y — z = a, instead of © — y — @, which we
first obta’ned ; and there is no need of changing the sign of ¢, the

. ..y
second equation remaining 7=

M. Francais applies not less happily these considerations to the
case of art. 75., by substituting, for the couriers, moveable bodies,
subjected to a continued motion commencing from an indefinite time.
He enunciates the problem thus; ¢ Two moveable bodies are carried
uniformly in a straight line CB (page 85) one in the direction BC,
and the other in the direction CB with given velocities ; that, which is
carried in the first direction, is found in B, a known number of hours
before the other has arrived at A; it is asked, at what point of the
indefinite straight line BC their mecting takes place ?

“ The solution z = — 48! jmplies, that the two moveable bodies
met at the point R, before that, which is carried from C towards B,
had reached the point A, and that the second, which moves from B
towards C, was at the point C, where he is found when the other is at
the point A4.”

The position assigned to the point R, verifies itsel{’ by observing,
that there results from it 4C = BC — AB = c¢d — a, instead of
a -+ ¢ d, as first obtained (page 85,) and, consequently,

z cd—a—z

—- == — —_

b c

an equation which gives z — 48.

In this manner there is no change to be made in the direction of
the motion ; indeed there is a difference in the circumstances of the
problem, and as I said before, this proves, that there are several phy-
sical questions corresponding to the same mathematical relations.
But the enunciations, here given, have the advantage of not breaking
the law of continuity, and this is derived from the consideration of
lines, which represent in a manner the most simple and general, the
circumstances of a change of sign in magnitudes. (Sec the Elemen-
tary Treatise of Trigonomeiry and Application of Algebra to Ge-
ometry.)



( Note referred to Page 203.)

I may be thought, that in order to discover the roots of any equa-

tion of the fourth degree

- padt g2 4ra4-s=0,

it would be sufficient to compare it with the product of article 183.,
observisg to put equal to cach other the quantities by which the same
power of z is multiplied ; and it is in this manner that most clemen-
tary writers think to demonstrate, that an equation of any degree
whatever is the product of as many simple factors, as there are units
in the ceponent of its degree. It will be seen by what follows, that
the reasoning by which this is attempted to be proved, is defective.
We stated the proposition with qualification in article 182., because it
is necessary, in order to estabiish it unconditionally, to show that an
equation of whatever degree has a root, real or imaginary, which is
not easily done in an clementary work, and which happily is not
necessary. Some remarks relating to this subject may be found in
the Supplement.

By forming the equations,

—a—b—c—d=p,
abt+ac+tadtbe+bd+cd=q,
—abec—abd—acd—becd=r,
abcd=s,
in order to deduce from them the value of the letters, a, b, ¢, d, the
roots of the proposed equation, the calculation would be very compli-
cated, if, in the determination of the unknown quantities, a, b, ¢, d,
we adopt the method of article 78; but if we multiply the first of the
above cquations by @3, the second by «*, the third by a, and add these
three products to the fourtl, member to member, we shall have
—wt=pd g +ra-ts,
from which we derive, by simple transposition,
d4pdFfqgaif-ra4s=0.
This equation contains only a, but it is entircly similar to the one
proposed. The difficulty of obtaining «, therefore, is the same as that
of obtaining =.

«Thus,” says Castillon (M¢m. de DBerlin, année 1789,) « it is
shown in every work on algebra, that an cquation of any degree we
please, is formed of several simple binomials, but it is not so evident
that an equation, formed by the multiplication of several simple bino-
mials, can have such coeflicients as we please.”

Alg 37
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If, instead of multiplying the first three equationsin a, b, ¢, d, by
a3, a?, and a, respectively, we multiply them by 3, 52, and b, or by
3, 2, ¢, or d°, 2, d, and add the products to the fourth equation, we
shall have in the first

— b =pl 4 ql® 4 b5,

—cd=pSt+qg4rcis,

in the second

in the third
—d=pdd 4 qd*> 4 rd 4 s;

from which it follows, that we are condacted to the same equation in
the case of g, in that of b, &c. Indeed the quantities, a, b, ¢, d, being
all disposed in the same manner in each equation, it is not to be sup-
posed that one should be determined by a different operation from
that of the others; and, in general, if in the investigation of several
unknown quantities, we are obliged to employ for each the same rea-
sonings, the same operations, and the same known quantitics, all
these quantities will necessarily be roots of the same equation.



2, Add 147a¢ 4+ 230 —a—b + 2 a.

QUESTIONS FOR PRACTICE

IN

LACROIX’S ALGEBRA.

1. Addition, Art. 18.

. Add the quantities v 4 yz 4 42—292 —yz—9.

Ans. 33 — 28 .

Ans. 148 a - 22 b.

3. Add1la+1labF1labec—1lafab—1labe.

Ans. 12 a b.

4. Add 43¢ — 27¢—20a}7¢c—61b6 — 2l a 4 576
4 20c¢.

Ans. 2a—45b.

5. Adde+ 9d+a—7¢c+Sv—a 4 6d+6¢c — 72
— 14 d.

Ans.a —¢ +d + z.

6. Add7abc+6ab45c—abe421a++9c—27ay
+8abe+ 100—932+4 106 4 3la—2ab—c+5ay
—abc+ 33 = .

Ans.13abec44ab+4 13c+ 100 4 62r —22 2 y— 60 2,

10.

II. Subtraction, Art. 20.

From 6r—8y+43
subtract 2a 4 9y—2.
From 5ry—S8

subtract —3 2y 4 1, .- -

. From day—~x4ay

subtract 2xy-424 a2y,

From S5+ x—8—45b

subtract - 6 £ —10 4-4b —wa,

——

- . 1l

Ans. 4z — 17y 4 5.

Ans. 8 zy — 9,

Ans. 22y —ar—2.

Ans. 2 4+ x — 8.
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11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

Questions for Practice.

From 148a 4+ 47ab—23abec+ 11—z
subtract  99a¢—47ab—8abc—2 4+ 4.
Ans. 49a +94ab—15abc+3—52
From Tb—8c¢+43260y—43b 411l c4a
subtract — 5000 —22a—87Tay—"7Tec.
Ans. 4640 423 a 4 110¢c 4 4132 3.

1. Multiplication, Art. 32.

Multiply 12 ¢ by 3a. - - ‘ ns. 36 2 2.
Multiply Sxy—S-l—QxJz by @ y.
Ans. 3 a%y —chy-—[—Qm
Multiply 12 2% — 4 3 by — 222
Ans. — 24 a* 4 8 a° 12
Multiply @ + o?y + 2 3* 4 * by 2 — .
Ans. ot — 34
Multiply 2® 4+ xy + 1? by a® — @y 4 92
Ans. a* + a® 2 + y*
Multiply 83a® —2xy + 5 by 2 4+ 22y — 3.
Ans.3at 4 4a3y—4a°>—42° )+ 160y — 15.
Multiply 3a® 4-22%5® + 3P by 223 —3a%2 4 54
Ans. 65— 5a° P 4 2105 — 6 a y* 4 a?y® - 1545

1V. Diviston, Jrt. 46.

Divide 102y — 153 — 5y by 5 .
Ans. 2 2 — 3y — 1.

Divide 3¢®*—15 + 6a + 3b by 3 a.
Ans. a-—— + 2 +é

],

22. Divide 6 z* — 96 by 32 — 6.

23.

Ans. 2a° 44 a® 4 8x 4 16.

Divide 48 43— 76 ¢ 2> — 64 a2 4- 105 a®by 2 — 3 a.
Ans. 24 a® —2 a x — 35 a2

V. Reduction of Fractions, Art. 50 and 52.

z 4 23

. [
24. What is the greatest common measure of ———.?
cat4-dz

Ans. ¢ 4 .
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—1
25. What is the greatest common measure of —_—}-_7>
Ans. x4 1.
22— g
26. What is the greatest common divisor of 54.

Ans. a® —i2

g1— ¢ .
27. Reduce ey g ACRL lowest terms.

Io“ est terms.

ﬂns. a® — 1 gr. c. d. and 2

a~’+10 atz 45 a322
t+2aa? +2ad o g
5 (t’l—}-— 5a3x

u-x—{—uz G 43

to its lowest terms.

28. Reduce

Ans. a4 gr. c. d. aud lowest terms.

29 3 2z L . . .
. Reduce Do and a + — o equivalent fractions having
~

a common denominator.

92 8azx 12a%2 424 2
and

Ans. e 12a 2a °
1 2+
30. Redllce7~ 3, and = “Ta to fractions having a common

denominator.
3z+3a x4+ 2a8 622 4 6a?
+ and +

ﬂns'ﬁz—}—(ia_bz—{—()a ’ 6z4+6a’

b ¢ d . .
31. Reduce 5 SR and S o fractions having a common de-

nominator.

2¢2b 2a8¢ 4 a3d
.44,44,ad44.

Ans

VL. Multiplication and Division of Fractions, Art. 51.

32. What is the product of and ai i
Ans Bt az

@+ ac’
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2z 3abd 3ac

33. What is the product of —, —— and o=?
Ans. 9 a @
. ‘ 22— a4 02
34. What is the product of 5~ and T
74 — D4
/ —
Ans FoEha
D e
35. What is the quoticnt of 5 divided by f”}?
Ans. 11,
36. What is the quotient of z 1_ ! divided by 2z
Ans. = +1
‘4z
24— bt ..
37. What is the quotient of Y Py divided by
2?4+bx, R
b ﬂns.a-}-z-

VII. Addition and Subtraction of Fractions, /Art. 53

38. Addx-—{—z to?x—’,—”t—g
Ans. 4 4 —5 lOz——l/
39. Add %E, ?;, and 22 ;-—1 together.
Jlns.wgz&{-m 2. +4§f‘+}=,
40. Add together 4 =, —7;, and 2 4 g
Ans. ——8* r3a 4 Qf:
41. From z-i—  subtract _ca Ans. dz_i_:j_-——é.c
42. From 3—72 subtract %’T . Ans. %z
43. From 3z + % subtract & — ——.
Ans. 2 x 4 czfbr—ab

be
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VII. Problems in Simple Equations, Art. 82.

44, In 52 — 15 = 2 & 4 6 to find the value of «.

Ans. x = 7.
45. Tn 3y — 2 + 24 = 31 to find y.

Ans. y = 3.

46. In the equations z

) =
~ o :l/+" —
3 4+ 8y =31 and —4———}—10m_

192 to find @ and ¥.
Ans. x = 19 and y = 3.

47. Out of a cask of wine, which had leaked away one third,
21 gallons were drawn, and then being gauged it was found to be
half full : how much did it hold ? Jns. 126 gallons.

48. What two numbers are those, whose difference is 7 and
sum 337 JAns. 13 and 20.

49. What number is that from which -if 5 be subtracted, two
thirds of the remainder will be 40 ? ' ‘ Ans. 65,

50. At a certain clection 375 persons voted, and the candidate
chosen had a majority of 91 votes: how many voted for each
candidate ? Ans. 233 for one, and 142 for the other.

51. A postis 1 inthe mud, % in the water, and 10 feet above
the water : what is its whole length ? Ans. 24 feet.

52. A man arriving at Paris, spent the first day 1 of the money
he brought with him, the second day 1, and the third day 1, after
which he had only 26 crowns left : how much did he have on
arriving at Paris ? JAns. 120 crowns.

53. A horse said to a mule, if I give you one of my sacks we
shall be equally loaded, if 1 take one of yours I shall have twice as
much as you : how many sacks had each?

Ans. The horse 7 and the mule 5.

54. A man being asked how many crowns he had, replied, if
you add together a half; a third, and a quarter of what I have, the
sum will exceed the number of crowns I have by one : what was
the number ? Ans. 12.

55. A privateer running at the rate of 10 miles an hour discov-
ers a ship 18 miles off making way at the rate of 8 miles an hours :
how many miles can the ship run before being overtaken ?

Ans. 72 miles, or 9 hours.
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56. A hare is 50 leaps before a grey-hound, and takes 4 leaps
to the grey-hound’s 35 but two of the grey-hound’s leaps are as
much as three of the hare’s: Low many leaps must the grey-hound
take to catch the hare? Ans. 300.

57. A person being asked his age, replied, that 3 of his age
multiplied by ;5 of his age would give a product equal to his age :
what was his age ? Ans. 16.

58. A person has a lease for 99 years; and being asked how
much of it was already expired, answered, that two thirds of the
time past wae equal to four fifths of the time to come: what was
the time past ? Jns. 54 years.

59. There is a fish whose tail weighs 9 bs., his head weighs as
much as his tail and half his body, and his body weighs as much
as his head and tail : what is the whole weight of the fish?

Ans. 72 lbs.

60. There is a certain number, consisting of two digits, the sum
of which digits is 55 and if 9 be added to the number itself the
digits will be inverted : what is the number ? Ans. 23.

61. A person fourd, upon beginning the study of his profession,
that 1 of his life hitherto had passed before he commenced his
education, % under a private teacher, ¥ at a public school, and four
years at the university : what was his age ?

Ans. 21 years.

62. To find a number such, that whether it be divided into two
or three equal parts, tiie continued product of its parts shall be
equal to the same quantity. Ans. 62.

63. A person has two horses and a saddle worth 507 : now if
the saddle be put on the back of the first horse, it will make his
value double that of the second 5 but if it be put on the back of the
second, it will make his value triple that of the first : what is the
value of each horse? Ans. cne 301 and the other 401,

64. To divide the number 90 into four such parts that if the
first be increased by 2, the sccond diminished by 2, the third
multiplied by 2, and the fourtl) divided by 2, the sum, difference,
product, and quotient, shall each equal the same quantity.

Ans. The parts are 18, 22, 10, and 40.

65. By his will a father disposed of his property as follows ;
namely, to his oldest son he gave 100 dollars of the property, and
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a tenth part of the residue ; to the second, 200 dollars and a tenth
part of the residue ; to a third, 300 dollars and a tenth part
of the residue; and so on to the last, always increasing the
sum first paid out by 100 dollars. It appeared that the portions of
all the children were alike. Required the value of the property,
the number of children, and the portion of each child.

Ans. The estate was 8100 dollars, the children 9, and the por-
tion of each 900 dollars.

66. A and B have the same income; A is extravagant and
contracts an annual debt amounting to 1 of his income ; but B
lives upon 4 of his ; at the end of 10 years, B lends A money
enough to pay off his debts, and has 160l. to spare : what is their
income ? JAns. 2801,

67. A person passed 1 of his age in childhood, % in youth, 1
and 5 years besides in matrimony, at the end of which time he
had a son, who died 4 years before his father, and reached only
half his father’s age ; at what age did the father die ?

' Ans. 84.

68. A shepherd, driving a flock of sheep in time of war, meets
with a company of soldiers, who plunder him of half his flock and
half a sheep over; and he receives the same treatment from a
second, third, and fourth company, each succeeding company
plundering him of half the flock the last had left and half a sheep
beside, insomuch that in the end he had only 8 sheep left: how
many sheep had he in the beginning? Ans. 143,

69. A person, fifteen years after he was married, being asked
the age of himsell and of his wife at the time of their marriage,
replied, that he was then thrice as old as his wife, but that now he
was only twice as old : what were their ages ?

Ans. He was 45 and she 15.

70. It is required to find two numbers such that the first added
to half the second shall make 20, and the second added to one
third the first shall also make 20. Anrs. 12 and 16.

71. Two travellers, distant 154 miles, set out at the same time
to meet each other, the one proceeding at the rate of 3 miles in 2
hours, and the other at the rate of 5 miles in 4 hours: how long
and how far did each travel before they met?

JAns. The time was 56 hours, the speces travelled 84 and 70
miles.

Alg. 38
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IX. Formation of Powers and Extraction of Roots.

72. What is the square root of 92?? (Art. 122.)

| Ans. 3 a.
) 92292 3zy
P S ————
73. What is the square root of ——-? Ans. 5= N7

74. What is the square rootof o' + 46®z 4 6 0®2® 4 402’ +
at? (Are. 124.) Ans. ¢ 4+ 2ax 4 a2
. 3 z 1
75. What is the square root of #* — 24 4 5@ — 5+ is
Ans. 2> — @ 4 1.

76. What is the third power of —8a213? (Art. 127.)
Ans. — 512 a® 32,

77. What is the fifth root of — 324°10? (Art. 129.)
Ans. — 2z 42

78. What is the fourth power of @ — a? (Art. 141.)
Ans. a* — 42 a 4 62%a® — 42a3F ot

79. What is the square of a® 4 202 4 22? (Art. 145.)
Ans. a* + 4a®x 4 6a®2® 4 4043 4 2t
80. What is the cube root of 2® — 6 2% 4~ 15 a* — 20 2® -

152® — 62 - 1° (Art. 155.) Ans. a® — 22 4 1.
81, What is the fifth root of 32 2% — 30 a* 4 80 4® — 40 a°
+ 10z—1? Ans. 22 — 1.

END.





















