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ADVERTISEMENT.

Lacroix's Algebra has been in use in the French schools for

a considerable time. It has been approved by the best judges,

and been generally preferred to the other elementary treatises,

which abound in France. The following translation is from the

eleventh edition, printed at Paris in 1815. No aheration has

been made from the original, except to substitute English instead

of French measures in the questions, where it was thought neces-

sary. When there has been occasion to add a note by way

of illustration, the reference is made by a letter or an obelisk,

the author's being always distinguished by an asterisk.

In this third edition examples are introduced of the leading sec-

tions of the work, selected principally from the celebrated collection

of Meier Hirsch, and intended as an exersise for the learner.

Cambridge, JYovemher, 1830.
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ELEMENTS OF ALGEBRA.

Preliminary Rem.arks upon the Transition fi^om Arithmetic to Alge-

bra—Explanation and Use of Algebraic Signs.

1. It must have been remarked in the Elementary Treatise of

Arithmetic, that there are many questions, the solution of which

is composed of two parts ; the one having for its object to find

to which of the four fundamental rules the determination of the

unknown number by means of the numbers given belongs, and

the other the application of these rules. The first part, inde-

pendent of the manner of writing numbers, or of the system of

notation, consists entirely in the developement of the consequences

which result directly or indirectly from the enunciation, or from

the manner in which that which is enunciated connects the num-

bers given with the numbers required, that is to say, from the

relations which it establishes between these numbers. If these

relations are not compHcated, we can for the most part find by

simple reasoning the value of the unknown numbers. In order

to this it is necessary to analyze the conditions, which are in-

volved in the relations enunciated, by reducing them to a course

of equivalent expressions, of which the last ought to be one of

the following ; the unknown quantity equal to the sum or the differ-

ence, or the product, or the quotient, of such and such magnitudes.

This will be rendered plainer by an example.

To divide a given number into two such parts, that the first shall

exceed the second by a given difference.

In order to this we would observe 1 ., that,

The greater part is equal to the less added to the given excess, and

that by consequence, if the less be known, by adding to it this

excess we have the greater ; 2., that,

Alg. 1



2 Elements of Algebra,

The greater added to the less forms the number to be divided.

Substituting in this last proposition, instead of the words, the

greater part, the equivalent expression given above, namely, the

less part added to the given excess, we find that

The less part, added to the given excess, added moreover to the

less part, forms the number to be divided.

But the language may be abridged thus,

Twice the less part, added to the given excess, forms the number

to be divided ;

whence we infer, that,

Twice the less part is equal to the number to be divided diminished

by the given excess ;

and tliat.

Once the less part is equal to half the difference between the num-

ber to be divided and the given excess.

Or, which is the same thing.

The less part is equal to half the number to be divided, dimin-

ished by half the given excess.

The proposed question then is resolved, since to obtain the

parts sought it is sufficient to perform operations purely arith-

metical upon the given numbers.

If, for example, the number to be divided were 9, and the

excess of the greater above the less 5, the less part would be,

according to the above rule, equal to | less f , or f , or 2 ; and

the greater, being composed of the less plus the excess 5, would

be equal to 7.

2. The reasoning, which is so simple in the above problem,

but which becomes very complicated in others, consists in gen-

eral of a certain number of expressions, such as added to, dimin-

ished by, is equal to, &c. often repeated. These expressions

relate to the operations by which the magnitudes, that enter into

the enunciation of the question, are connected among themselves,

and it is evident, that the expressions might be abridged by

representing each of them by a sign. This is done in the follow-

ing manner.

To denote addition we use the sign -[-, which signifies plus.

For subtraction we use the sign—, which signifies minus.

For multiplication we use the sign X , which signifies multi-

plied by.

To denote that two quantities are to be divided one by the
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other, we place the second under the first with a straight line

between them
; f signifies 5 divided by 4.

Lastly, to indicate that two quantities are equal, we place be-

tween them the sign =, which signifies equal.

These abbreviations, ahhough very considerable, are still not

sufficient, for we are obliged ofien to repeat the number to be

divided, the number given, the less part, the number sought, &c. by

which the process is very much retarded.

With respect to given quantities, the expedient which first

offers hself is, to take for representing them determinate num-

bers, as in arithmetic ; but this not being possible with respect to

the unknown quantities, the practice has been to substitute in

their stead a conventional sign, which varies as occasion re-

quires. We have agreed to employ the letters of the alphabet,

generally using the last ; as, in arithmetic, we put x for the fourth

term of a proportion, of which only the three first are known.

It is from the use of these several signs that we derive the

science of Algebra,

I now proceed by means of them to consider the question

stated above (l). I shall represent the unknown quantity, or

the less number, by the letter x, for example, the number to be

divided and the given excess by the two numbers 9 and 6 ; the

greater number, which is sought, will be expressed by ^ + 5,

and the sum of the greater and less by x -]- 5-{- x; we have

then

X -{- ^ -]- x=:9
;

but by writing 2 x for twice the quantity x, there will result

2a? + 5 = 9.

This expression shows that 5 must be added to the number

2 0? to make 9, whence we conclude that

2 a? = 9— 5,

or that 2x=i4,

and that lastly a? = | = 2.

By comparing now the import of these abridged expressions,

which I have just given by means of the usual signs, with the

process of simple reasoning, by which we are led to the solution,

we shall see that the one is only a translation of the other.

The number 2, the result of the preceding operations, will

answer only for the particular example which is selected, while

the course of reasoning considered by itself, by teaching us, that
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the less 'part is equal to half the number to be divided, minus half

the given excess, renders it evident, that the unknown number is

composed of the numbers given, and furnishes a rule by the aid

of vi^hich we can resolve all the particular cases comprehended

in the question.

The superiority of tiiis method consists in its having reference

to no one number in particular ; the numbers given are used

throughout, without any change in the language by which they

are expressed ; whereas, by considering the numbers as determi-

nate, we perform upon them, as we proceed, all the operations

which are represented, and when we have come to the result,

there is nothing to show how the number 2, to which we may

arrive by any number of different operations, has been formed

from the given numbers 9 and 5.

3. These inconveniences are avoided by using characters to

represent the number to be divided and the given excess, that

are independent of every particular value, and with which we

can therefore perform any calculation. The letters of the alpha-

bet are well adapted to this purpose, and the proposed question

by means of them may be enunciated thus.

To divide a given number represented by a into two such parts

that the greater shall have with respect to the less a given excess

represented by b.

Denoting always the less by x
;

The greater will be expressed by x -^-b

;

Their sum, or the number to be divided, will be equal to

X -{- X -{• b, or 2 X -^ b
;

The first condition of the question then will give

2x + b = a.

Now it is manifest that, if it is necessary to add to double of

X, or to 2 X, the quantity b in order to make the quantity a, it

will follow from this, that it is necessary to diminish a by b to

obtain 2 x, and that consequently 2 x =z a— b.

We conclude then that half of 2 a? or a? = g— ^.

This last resuh, being translated into ordinary language, by

substituting the words and phrases denoted by the letters and

signs which it contains, gives the rule found before, according to

which, in order to obtain the less of two parts sought we subtract
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a
from half of the number to he divided^ or from ^ halfofthe given

b
excess, or 5.

Knowing the less part, we have the greater by adding to the

less the given excess. This remark is sujfRcient for effecting the

solution of the question proposed ; but Algebra does more ; it

furnishes a rule for calculating the greater part without the aid of

the less as follows
;

^— ^ being the value of this, augmenting it by the excess J,

we have for the greater part ^— ^ -f- ^- ^^^ o— 9,
'^ ^ shows

that after having subtracted from ^ the half of b, it is necessary

to add to the remainder the whole of b, or two halves of b,

which reduces itself to augmenting ^ by the half of b, or by ^.

It is evident then that ^— o + ^ becomes + 0? ^"^ ^Y ^^^^^~

lating this expression we learn, that of the two parts sought the

greater is equal to half of the number to be divided plus half of

the given excess.

In the particular question which I first considered, the num-

ber to be divided was 9, the excess of one part above the other

5 ; in order to resolve it by the rules to which we have just

arrived, it will be necessary to perform upon the numbers 9 and 5,

the operations indicated upon a and b.

The half of 9 being f and that of 5 being |, we have for the

less part

9 5 — 4 — 9

and for the greater

9 15 1_4 7
2 r 2 — 2 * •

4. I have denoted in the above the less of the two parts by x,

and 1 have deduced from it the greater. If it were required to

find directly this last, it should be observed, that representing it

by X, the other will be x— b, since we pass from the greater to

the less by suhtracting the excess of the first above the second

;

the number to be divided will then be expressed by a: -|- a:— b,

or by 2 a?— i, and we have consequently 2 a?— b =: a.

This result makes it evident that 2 x exceeds the quantity a
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by the quantity b, and that consequently 2 a? = a -|- 6. By
taking the half of 2 a? and of the quantity which is equal to it, we
obtain for the value of x

^ - 2 + 2'

which gives the same rule as the above for determining the

greater of the two parts sought. 1 will not stop to deduce from

it the expression for the smaller.

The same relation between the numbers given and the num-

bers required may be enunciated in many different ways. That

which has led to the preceding result is deduced also from the

following enunciation :

Knowing the sum a of two numbers and their difference b, to find

each of those numbers ; since, in other words, the number to be

divided is the sum of the two numbers sought, and their differ-

ence is the excess of the greater above the less. The change in

the terms of the enunciation being applied to the rules found

above, we have

The less of two numbers sought is equal to half of the sum

minus half of the difference.

The greater is equal to halfpf the sum plus half of the difference.

5. The following question is similar to the preceding, but a

little more complicated.

To divide a given number into three such parts, that the excess

of the mean above the least may be a given number, and the excess

of the greatest above the mean may be another given number.

For the sake of distinctness I will first give determinate values

to the known numbers.

I will suppose that the number to be divided is 230
;

that the excess of the middle part above the least is 40 ; and

that of the greatest above the middle one is 60.

Denoting the least part by x,

the middle one will be the least plus 40, or a; + 40, and the

greatest will be the middle one plus 60, or a: + 40 + 60.

Now the three parts taken together must make the number to

be divided ; whence,

aj^a? + 40 + a? + 40+60 = 230.

If the given numbers be united in one expression and the un-

known ones in another, x is found three times in the result, and

for the sake of conciseness we write

So^-f 140= 230.
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But since it is necessary to add 140 to triple of x to make 230,

It follows, that by taking 140 from 230 we have exactly the

triple of a?, or

3 07 = 230—140,
or Sx = 90,

whence it follows that

a? = V =1= 30.

By adding to 30 the excess 40 of the middle part above the

least, we have 70 for the middle part.

By adding to 70 the excess 60 of the greatest above the mid-

dle part, we have 130 for the greatest.

6. ,Tjf the known numbers were different from those which I

have used in the enunciation, we should still resolve the question

by following the course pursued in the preceding article, but we

should be obliged to repeat all the reasonings and all the opera-

tions, by w^hich we have arrived at the number 30, because there

is nothing to show how this number is composed of 230, 40,

and 60. To render the solution independent of the particular

values of numbers, and to show how the value of the unknown

quantity is fixed by means of the known quantities, I will enun-

ciate the problem thus

;

To divide a given number a into three such parts, that the excess

of the middle one above the least shall be a given number b, and the

excess of the greatest above the middle one shall be a given number c.

Designating as above by x the unknown quantity, and making

use of the common signs and the symbols a, b, c, which repre-

sent the known quantities in the question, the reasoning already

given will be repeated.

The least part = x

the middle part znx-^-b^

the greatest z=. x -^-b -\-c.

and the sum of these three makes the number to be divided

;

hence,

x-\-x-\'b'\-x-\-b-\-c = a.

This expression, which is so simple, may be still further

abridged ; for since it appears that x enters three times into the

number to be divided and b twice, instead of a? -f- ^ + a:, I shall

write 3 a?, and instead of + 6 + 6, I shall write +2 6, and it will

become

3a? + 26 + c = a.
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From this last expression it is evident, that it is necessary to

add to triple the number represented by x, double the number

represented by b, and also the number c, in order to make the

number a ^ it follows then, that if from the number a we lake

double the number b and also the number c, we shall have exactly

the triple of oo, or that

3^ = a— 26— c.

Now X being one third of three times x, we thence conclude

that

a— 26—

c

X=: 3 .

It should be carefully observed, that having assigned ng par-

ticular value to the numbers represented by a, b, c, the result to

which we have come is equally indeterminate as to the value of

X ; it shows merely what operations it is necessary to perform

upon these numbers, w4ien a value is assigned to them, in order

thence to deduce the value of the unknown quantity.

In short, the expression
1^

, to which x is equal, may

be reduced to common language by writing, instead of the let-

ters, the numbers which they represent, and instead of the signs,

the kind of operation which they indicate ; it will then become,

as follows

;

From the number to be divided, subtract double the excess of the

middle part above the least, and also the excess of the greatest above

the middle part, and talce a third of the remainder.

If we apply this rule, w^e shall determine, by the simple opera-

tions of arithmetic, the least part. The number to be divided

being for example 230, one excess 40, and the other 60, if we

subtract as in the preceding article twice 40, or 80, and 60 from

230, there will remain 90, of which the third part is 30, as we

have found already.

If the number to be divided were 520, one excess 50, and the

odier 120, we should subtract twice 50, or 100, and 120 from

520, and there v/ould remain 300, a third of which or 100 would

be the smallest part. The others are found by adding 50 to 100,

which makes 150, and 120 more to this, which makes 270, so

that the parts sought would be

100, 150, 270,

and their sum would be 520, as the question requires.
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It is because the results in algebra are for the most part only

an indication of the operations to be performed upon numbers

in order to find others, that they are called in general formulas.

This question, although more complicated than that of article

l.j may still be resolved by ordinary language, as may be seen

in the following table, where against each step is placed a transla-

tion of it into algebraic characters.

PROBLEM.

To divide a number into three such parts, that the excess of

the middle one above the least shall be a given number, and the

excess of the greatest above the middle one shall be another given

number,

SOLUTION.

By common language. By algebraic characters.

Let the number to be divid-

ed be denoted by a.

The excess of the middle part

above the least by b.

The excess of the greatest

above the middle one by c.

The least part being x.

The middle part will be the
^

least, plus the excess of the > The middle part will be oo -^ b.

mean above the least. )

The greatest part will be the"

middle one, plus the excess of

the greatest above the middle

one. The three parts will to-

gether form the number pro-

posed.

Whence the least part, plus

the least part, plus the excess

of the middle one above the

least, plus also the least part,

plus the excess of the middle

one above the least, plus the

excess of the greatest above
the middle one, will be equal

to the number to be divided.

Alg. 2

>'The greatest will he x -j- b -}- c.

Whence
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-"Zh— c

Whence three times the least 1

part, plus twice the excess of
]

the middle part above the

least, plus also the excess of>3a?+26 + ^ = ^'

the greatest above the middle

one, will be equal to the num-
ber to be divided.

Whence three times the least"

part will be equal to the num-
ber to be divided, minus twice

the excess of the middle part ^3 a? = a— 26-

above the least, and minus

also the excess of the greatest

above the middle one.

Whence in fine, the least part"

will be equal to a third of

what remains after deducting

from the number to be divid- .

ed twice the excess of the mid- (

die part above the least, and

also the excess of the greatest

above the middle one.

7. The signs mentioned in article 2. are not the only ones

used in algebra. New considerations will give rise to others,

as we proceed. It must have been observed in article 2. that

the muhiplication of x by 2, and in articles 5. and 6. that of x by

3 and that of h by 2, is denoted by merely writing the figures

before the letters x and h without any sign between them, and I

shall express it in this manner hereafter; so that a number

placed before a letter is to be considered as multiplied by the

number represented by that letter, 5 x, 5 a, he. signify five times

x^ five times «, &c. | a? or -^-j fee. signifies f of x, or three times

X divided by 4, he.

In general, multiplication will be denoted by writing the fac-

tors in order one after the other without any sign between them,

whenever it can be done without confusion.

Thus the expressions a x,b c, &c. are equivalent to a X oo,

b X c, &C.5 but we cannot omit the sign when numbers are con-

cerned, for then 3x5, the value of which is 15, becomes 35. In

this case we often substitute a point in the place of the usual

sign, thus, 3 . 5.
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8. If the solution of the problems in articles 3. and 6. be exam-

ined with attention, it will be found to consist of two parts entirely

distinct from each other. In the first place, we express by-

means of algebraic characters the relations established by the

nature of the question between the known and unknown quan-

tities, from which we infer the equality of two quantities among

themselves ; for instance, in article 3. the quantities 2 x -\- b and a,

and in article 6» the quantities 3 a? -|-2 6 + c and a.

We afterwards deduce from this equality a series of conse-

quences, which terminate in showing the unknown quantity x to

be equal to a number of known quantities connected together by

operations, that are familiar to us ; this is the second part of the

solution.

These two parts are found in almost every problem which be-

longs to algebra. . It is not easy, however, at present to give a

rule adapted to the first part, which has for its object to reduce

the conditions of the question to algebraic expressions. To be

able to do this well, it is necessary to become familiar with the

characters used in algebra, and to acquire a habit of analyzing

a problem in all its circumstances, whether expressed or implied.

But when we have once formed the two numbers, which the ques-

tion supposes equal, there are regular steps for deducing from

this expression the value of the unknown quantity, which is the

object of the second part of the solution. Before treating of

these I shall explain the use of some terras which occur in alge-

bra.

An equation is an expression of the equality of two quantities.

The quantities which are on one side of the sign = taken

together are called a member ; an equation has two members.

That which is on the left is called the first member, and the

other the second.

In the equation 2 a? + 6 = a, 2 a? + 6 is the first member, and

a is the second member.

The quantities, which compose a member, when they are sepa-

rated by the sign + or— , are called terms.

Thus, the first member of the equation 2 x -{- b = a contains

two terms, namely, 2 x and + b.
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The equation f a? -f- 7 = 8 a:— 12 has two terms in each of

its members, namely,

I X and -f- 7 in the first,

8 X and— 12 in the second.

Ahhough I have taken at random, and to serve for an exam-

ple merely, the equation ^ x -\- 7 =: S x— 12, it is to be consid-

ered, as also every other of which I shall speak hereafter, as

derived from a problem, of which we can always find the enun-

ciation by translating the proposed equation into common lan-

guage. This under consideration becomes.

To find a number x such^ that by adding 7 ^o f x, the sum shall

be equal to 8 times x minus 12.

Also the equation ax -{-b c— cx:=.ac— b x^ in which the

letters «, 6, c, are considered as representing known quantities,

answers to the following question
;

To find a number x such, that multiplying it by a given number a,

and adding the product of two given numbers b and c, and subtract-

ingfrom this sum the product of a given number c by the number x,

we shall have a result equal to the product of the numbers a and c,

diminished by that of the numbers b and x.

It is by exercising one's self frequently in translating questions

from ordinary language into that of algebra, and from algebra

into ordinary language, that one becomes acquainted with this

science, the difficulty of which consists almost entirely in the

perfect understanding of the signs and the manner of using them.

To deduce from an equation the value of the unknown quan-

tity, or to obtain this unknown quantity by itself in one member
and all the known quantities in the other, is called resolving the

equation.

As the different questions, which are solved by algebra, lead

to equations more or less compounded, it is usual to divide them

into several kinds or degrees. I shall begin with equations of the

first degree. Under this denomination are included those equa-

tions in which the unknown quantities are neither multiplied by

themselves nor into each other.

Of the resolution of Equations of the First Degree, having but one

unknown quantity,

9. We have already seen that to resolve an equation is to

arrive at an expression, in which the unknown quantity alone in
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one member is equal to known quantities combined together by

operations which are easily performed. It follows then, that in

order to bring an equation to this state, it is necessary to free

the unknown quantity from known quantities with which it is

connected. Now the unknown quantity may be united to known

quantities in three ways
;

1. By addition and subtraction, as in the equations,

X -\- 5 =2 9 — X,

a -\- X z=: b— X.

2. By addition, subtraction, and multiplication, as in the

equations,

*7 X— 5= 12 -[-4 a?,

ax— b =z ex -{- d.

3. Lastly, by addition, subtraction, multiplication, and division,

as in the equations,

ax
,

, mx
, p

-J- + c a:— a z=z H -.
6 ' n ^ q

The unknown quantity is freed from additions and subtrac-

tions, where it is connected with known quantities, by collecting

together into one member all the terms in which it is found ; and

for this purpose it is necessary to know how to transpose a term

from one member to the other.

10. For example, in the equation

Ix 5z:= 12 + 4^,

it is necessary to transpose 4 x from the second member to the

first, and the term— 5 from the first member to the second.

In order to this, it is obvious, that by cancelling -}- 4 a? in the

second member, we diminish it by the quantity 4 a?, and we must

make the same subtraction from the first member, to preserve

the equality of the two members ; we write then— 4 a? in the

first member, which becomes 1 x— 5 — 4 a?, and we have

7a?— 5— 4a? = 12.

To cancel— 5 in the first member, is to omit the subtraction

of 5 units, or in other words, to augment this member by 5 units

;

to preserve the equality then we must increase the second mem-
ber by ^5 units, or write + ^ in this member, which will make
it 12 + 5 5 we have then

7a?— 4a?=12+5.
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By performing the operations indicated there will result the

equation Socz=: 17.

From this mode of reasoning, which may be applied to any

example whatever, it is evident, that to cancel in a member a

term affected with the sign -|~> which of course augments this

member, it is necessary to subtract the term from the other

member, or to write it with the sign — ; that on the contrary

when the term to be effaced has the sign minus, as it diminishes

the member to which it belongs, it is necessary to augment the

other member by the same term, or to write it with the sign -f- ;

whence we obtain this general rule
;

To transpose any term whatever of an equation from one mem-

ber to the other, it is necessary to efface it in the member where it is

found, and to write it in the other with the contrary sign.

To put this rule in practice, we must bear in mind that the

first term of each member, when it is preceded by no sign, is

supposed to have the sign plus. Thus, in transposing the term

ex oi the literal equation ax— b = ex -\- d from the second

member to the first, we have

ax— b— ex =1 d'y

transposing also — b from the first member to the second, it

becomes

ax— ex ziz d -{-b.

11. By means of this rule, we can unite together in one of the

members all the terms containing the unknown quantity, and in

the other all the known quantities ; and under this form the

member, in which the unknown quantity is found, may always

be decomposed into two factors, one of which shall contain only

known quantities, and the other shall be the unknown quantity by

itself.

This process suggests itself immediately, whenever the pro-

posed equation is numerical and contains no fractions, because

then all the terms involving the unknown quantity may be re-

duced to one. If we have, for example,

lOx + 7 x— 2x=z2b + 7,

by performing the operations indicated in each member, we shall

have in succession

17a?— 2a; = 32,

1 5 a; = 32
;

and 15 a? is resolved into two factors 15 and a? ; we have then
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the unknown factor x by dividing the number 32, which is equal

to the product 15 a? by the given factor 15, thus,

^ 3 2

This resolution is effected in like manner in the literal equations

of the form

a X =zh c
;

because the term a x signifies the product of a by a? ; we hence

conclude, that

_bc
a

'

Let there be the equation

ax— bx -{- c X =: ac— Sc,

which contains three terms invoh^ing the unknown quantity.

Since ax, b x, ex, represent the products respectively of x by the

quantities a, 6, and c, the expression ax— 6 a? -j- c a? translated

into ordinary language is rendered as follows,

From X taken first, so many times as there are units in a, sub-

tract so many times x as there are units in b, and add to the result

the same quantity x, taken so many times as there are units in c.

It follows then on the whole, that the unknown quantity x is

taken so many times as there are units in the difference of the

numbers a and b, augmented by the number c, that is to say, so

many times as is denoted by the number a— 6 -[- c ; the two

factors of the first member are therefore a— b -\- c and x ; we

have then

a c— he

a— b '\- c

From this reasoning, which may be applied to every other ex-

ample, it is evident, that after collecting together into one member

the different terms containing the unknown quantity, the factor,

by which the unknown quantity is multiplied, is composed of all those

quantities by ivhich it is separately multiplied, arranged with their

proper signs, and the unknown quantity isfound by dividing all the

terms of the known member by the factor which is thus obtained.

According to this rule, the equation ax— Sx :=zb c gives

be
X z=. --.

a —

3

Also the equation a:-f-aa?r=:c— ^is reduced to

c — d



16 Elements of Algebra,

for it is necessary to observe that the letter x, taken singly,

must be regarded as multiplied by one. It is besides manifest,

that in ^ + a oc, the unknown quantity x is contained once more

than in a oc, and is consequently multiplied by 1 + «.

12. It is evident that if there be a factor, which is common to

all the terms of an equation, it may be dropped without destroy-

ing the equality of the two expressions, since it is merely dividing

by the same number all the parts of the two quantities, which are

by supposition equal to each other.

Let there be, for example, the equation

6 ab X— 9 b c d =: 12 b dx -{• 15 ab c.

I observe in the first place, that the numbers 6, 9, 12 and 15 are

divisible by 3, and by suppressing this factor, I merely take a

third part of all the quantities which compose the equation.

I have after this reduction,

2ab X— Sbcd = 4bdx'^babc.
I observe, moreover, that the letter b, combined in each term as

a multiplier, is a factor common to all the terms } by cancelling it

the equation becomes

2 ax— Scd=z4dx-\-5ac.
Applying the rules given in articles 10. and 11., I deduce suc-

cessively

2 ax— 4 dx =z 5 a c -{- Sod,

5 ac -}-Sc d^- 2a— 4d
•

13. I now proceed to equations, the terms of which have divi-

sors. These may be solved by the preceding rules whenever

the unknown quantity does not enter into the denominators

;

but it is often more simple to reduce all the terms to the same

denominator which may then be cancelled.

Let there be, for example, the equation

Arithmetic furnishes rules for reducing fractions to the same

denominator, and for converting whole numbers into fractions of

a given kind. [Arith, 79, 69.) Let all the terms of the pro-

posed equation be transformed by these rules into fractions of

the same denominator, beginning with the fractions, which are

2 X 4 X 5 X
"3"' "5"' T'
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I convert them by the first of the rules cited into the following
j

5XJX2x 3x 7x4a: 3 x5 x5a;
3X5X7' 3x5x7' 3x5x7*

Since, for converting the whole numbers 4 and 12 into fractions,

nothing more is necessary than to multiply them by the common

denominator of the fractions, namely, 3x5x7; we have

3X5X7X4, 3 X 5X 7 X 12.

By placing all these terms in order in the proposed equation, it

will become

5X7X2^ 3X5X7 X4
3X5X7 "T" 3X5X7

- ^X7x4a; 3 X 5 X 7 X 12 _ 3 X 5 X 5 a;~ 3X5X7 "T- 3x5x7 3x5x7'
The denominator may now be cancelled, since by doing it we

only multiply all the parts of the equation by this denominator

[Arith, 54), which does not destroy the equality of the members.

It will become then

5X 7 X 2X + SX 5X7X4
= 3X7X4^+3X5X7X 12—3 X ^ X ^ a:,

or 70 0? + 420 =z 84 x + 1260— 75 x,

an equation without a denominator from which we deduce the

value of X by the preceding rules.

It is evident from inspection, as also from the mere applica-

tion of the arithmetical rules referred to, that in the above ope-

ration the numerators of each fraction must be multiplied by the pro--

duct of the denominators of all the others, the whole numbers by the

product of all the denominators ; then no account need be taken of

the common denominators of the fractions thus obtained.

The equation 70 a? + 420 = 84 a? + 1260— 75 a? becomes

successively

70 a; + 75 07— 84 0? = 1260— 420,

61 0? = 840,

X = Vt == 13|f.

The same process is applicable to literal equations, it being

observed, that it is necessary only to indicate the multiplications,

which are actually performed when numbers are concerned.

Let there be, for example, the equation

h
"^^

e ^ h '

we deduce from it

ehx ax— behxc = bhxdx-\-beX fgi
Mg, 3
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a result which may be more simply expressed by placing the

factors of each product one after the other without any sign be-

tween them, according to the method given in article 7. ; and by

arranging the letters in alphabetical order, they are more easily

read ; it then becomes

aehx— he eh = h d hoc -}- b efg,
from which is deduced

aeh X ^^b dhx :=: b efg -{-b c eh,

and ^ = ^^±^11},
a e h— ban

14. Although no general and exact rule can be given for

forming the equation of any question whatever ; there is, not-

withstanding, a precept of extensive use, which cannot fail to

lead to the proposed object. It is this,

To indicate by the aid of algebraic signs upon the known quan-

tities represented either by numbers or letters, and upon the unknown

quantities represented always by letters, the same reasonings and

the same operations, which it would have been necessary to perform

in order to verify the values of the unknown quantities, had they

been known.

In making use of this precept, it is necessary, in the first place,

to determine with care what are the operations which are con-

tained in the enunciation of the question, either directly or by

implication ; but this is the very thing which constitutes the diffi-

culty of putting a question into an equation.

The following examples are intended to illustrate the above

precept. I have taken the two first from among the questions

which are solved by arithmetic, in order to show the advantage of

the algebraic method.

{!,) Let there be two fountains, the first of which runningfor ^^h.

fills a certain vessel, and the second fills the same vessel by running

3|A. ; what time will be employed by both the fountains running

together in filling the vessel ?

If the time were given, we should verify it by calculating the

quantities of water discharged by each fountain ; and adding them

together we should be certain, that they would be equal to the

whole content of the vessel.

To form the equation we denote the unknown time by x, and

we indicate upon x the operations implied by the question ; but

in order to render tlie solution independent of the given num-
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bers, and at the same time to abridge the expression where frac-

tions are concerned, we will represent them also by letters, a

being written instead of 2ih. and b instead of 3fh.

This being supposed, by putting the capacity of the vessel

equal to unity, it is evident, that

The first fountain, which will fill it in a number of hours de-

noted by a, will discharge into it in one hour a quantity of

water expressed by the fraction -, and that consequently, in a

1 X
number x of hours it will furnish the quantity x X -, or -.

{Arith. 53).

The second fountain, which will fill the same vessel in a num-

ber of hours described by h, will discharge into it in one hour a

quantity of water expressed by the fraction ^, and consequent-

ly in a number x of hours, it will furnish the quantity ^ X t?

X
org.

The whole quantity of water then furnished by the tvs^o fountains,

will be

and this quantity must be equal to the content of the vessel,

which was considered as unity ; we have then the equation

a b

This equation reduced by the foregoing rules, becomes

b X -\- ax z=z ahy

a h
X z::z

6+ a'

The last formula gives this simple rule for resolving every

case of the proposed question.

Divide the product of the numbers^ which denote the times em-

ployed by each fountain in fdling the vessel, by the sum of these

numbers ; the quotient expresses the time required by both the foun-

tains running together to fill the vesseL

Applying this rule to the particular case under consideration,

we have

91-1-^3 51.15 2_0 J_ 3 5_0
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whence a? = ||^ = |.

(2.) Let a be a number to be divided into three parts, having

among themselves the same ratios as the given numbers m, n, and p.

It is evident that the verification of the question would be as

follows

;

denoting the 1st part by x, we have

m : n I : X : the 2d part = —
,
[Jlrith. 1 16.)

7/1 : ^ : : cc : the 3d part = ^—
;

the three parts added together must make the number to be

divided. We have then the equation

, n X , px
X A ^^— = a.

* m m
By reducing all the terms to the denominator m, it becomes

mx -]- nx '\- px z:^ am

;

and we deduce from this

a m
m-\-n -\-p'

This result is nothing more nor less than an algebraic expres-

sion oi the rule of Fellowship {Jlrith, 124); for by regarding

the numbers m, w, p, as denoting the stocks of several persons

trading in company, m + w+^is the whole stock, a the gain

to be divided, and the equation

ma
m -\-n-\-p

shows that a share is obtained by multiplying the corresponding

stock into the whole gain, and dividing the product by the sum of

the stocks ; which reduced to a proportion, becomes

the whole stock : a particular stock

: : the whole gain : the particular gain.

15. To form an equation from the following question, re-

quires an attention to some things, which have not yet been con-

sidered*

A fisherman, to encourage his son, promises him 5 cents for each

throw of the net in which he shall take any fish, but the son, on the

other hand, is to remit to the father 3 cents for each unsuccessful

throw. After 12 throws the father and the son settle their account,

and the former is found to owe the latter 28 cents. What was the

number of successful throws of the net.
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If we represent this number by x, the number of unsuccessful

ones will be 12— a? ; and if these numbers were given, we should

verify them by multiplying 5 cents by the first, to obtain what

the father was bound to pay the son, and 3 cents by the second,

to find what the son engaged to return to the father. The first

number ought to exceed the second by 28 cents, which the

father owed the son.

We have for the first number x times 5 cents, or 5 x. With

respect to the second, there is some difficulty. How are we to

obtain the product of 3 by 12— a? ? If instead of x we had a

given number, we should first perform the subtraction indicated,

and then multiply 3 by the remainder ; but this cannot be done

at present, and we must endeavour to perform the multiplication

before the subtraction, or at least, to give the expression an

entire algebraic form, similar to that of equations that are readily

solved.

With a litde attention we shall see, that by taking 12 times

the number three, we repeat the number 3 so many times too

much, as there are units in the number a?, by which we ought

first to have diminished the multiplier 12, so that the true pro-

duct will be 36 diminished by 3 taken x times, or 3 a?,

or more simply 36— 3 a?.

This conclusion may be verified by giving to a? a numerical
value. If, for example, x were equal to 8, we should have 3 to

be taken 12 times— 8 times, and, if we neglect — 8 times, we
should make the result 8 times the number 3 too much ; the
true product then will be

3 X 12— 3 X 8 = 36 — 24 = 12.

This result agrees witli that which would arise from first sub-
tracting 8 from 12 ; for then

12— 8 = 4, and 3 X 4= 12.

This being admitted, since the money due from the father to the

son is expressed by 5 t, and that which the son owes the father

by 36— 3 X, the second number must be subtracted from the
first in order to obtain the remainder 28 ; but here is another

difiiculty ; how shall we subtract 36 — 3 x from 5 x, without
having first subtracted 3 x from 36 ?

We shall avoid this difficulty by observing, that if we neglect

the term— 3 a?, and subtract from 5 a? the entire number 36, we
shall have taken necessarily 3 x too much, since it is only what
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remains after having diminished 36 by 3 a? that is to be subtract-

ed from 5 0? ; so that the difference b x— 36 ought to be aug-

mented by 3 a; in order to form the quantity that should remain

after having taken from 5 x the number denoted by 36—3 x.

This quantity will then be

5a;_36 4-3a?,

and we have the equation

5 a?— 36 + 3 a? = 28,

which becomes successively

8 a?— 36 = 28,

8 a: = 28 + 36,

8 ^ = 64,

X ;

6_4

There have been then 8 successful throws of the net and 4

unsuccessful ones.

Indeed 8 throws at 5 cents a throw give 40 cents,

4 throws at 3 cents a throw give 12

difference 28

as required by the conditions of the question.

To render the solution general, let a represent the sum given

by the father to the son for each successful throw of the net, and

h the sum returned by the son for each unsuccessful one, and c

the total number of throws, and d the sum received on the whole

by the son. If x be put equal to the number of successful throws,

c— X will express the number of unsuccessful ones; each throw

of the former kind being worth to the son a sum a, x throws

would be worth a X a?, or a a:, and the unsuccessful throws would

be worth to the father the sum h multiplied by the number c— x.

The reasoning by which we have found the parts of the pro-

duct of 3 by 12— a?, applies equally to the general case. If we

neglect in the first place— a? in forming the product i c of 6 by

the whole of c, the sum h will be repeated x times too much, and

consequently the true product will be 6 c— h x.

In order to subtract this product from the sum a x, it is neces-

sary to observe, as in the numerical example, that if we subtract

the whole of the quantity b c, we take the quantity b x too much,

by which the former ought to have been first diminished, and

that consequently the true remainder is not merely ax— be, but

ax— 6c-j-6a?.
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As this sum is equal to d, we have the equation

ax— b c -\- bx =z d,

which gives

aX'^bx=:d-\-bc,
_d+ bc

As this general formula indicates what operations are to be

performed upon the numbers a, b, c, d, in order to obtain the

unknown quantity x, we may reduce it to a rule, or carefully

write instead of the letters a, b, c, d, the numbers given. This

last process is called subsiiiuiing the values of the given quanti-

ties, or putting the formula into numbers. Applying here those of

the foregoing example, as we have

___28+3 X12

by performing the operations indicated, it becomes

28 + 36 64 ^

Methods for performing, as far as is possible, the Operations indi-

cated upon Quantities that are represented by Letters,

IG. From the preceding question it is evident, that in certain

cases a multiplication indicated upon the sum or difference of

several quantities is made to consist of several partial multipli-

cations ; and in art. 11. we have exactly the reverse, by resolv-

ing the quantity ax— bx-\- ex, which represents the result of

several multiplications, followed by additions and subtractions,

into the two factors a— 6 -j- c and x, which indicate only a sin-

gle multiplication preceded by addition and subtraction. The

reasoning pursued in these two circumstances will suggest rules

for performing, upon quantities represented by letters, operations

which are called algebraic multiplication and division, from the

analogy which they have with the corresponding operations of

arithmetic.

We have also by the same analogy two algebraic operations,

which bear the names of addition and subtraction, in which the

object is to unite several algebraic expressions in one, or to take

one expression from another. But these operations, like the

preceding, differ from those of arithmetic in this, that their

results are, for the most part, only indications of the operations
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to be performed ; they present only a transformation of the

operations originally indicated into others, which produce the

same effect. All that is done, is either to simplify the expres-

sions, or to give them a proper form for exhibiting the conditions

that are to be fulfilled.

In order to explain these operations, we give the name of

simple quantities to those which consist only of one term, as

4- 2 a,—3 a 6, &:c. ; hinomials to those which consist of two, as

a-]-!), a— b, ba— 2 a:, Stc. ; trinomials to those which consist

of three terms ;
quadrinomials to those which consist of four terms,

and polynomials to those which consist of more than four terms.

It may be observed also, that we call polynomials campound quanti-

ties.

Of the Addition of Algebraic Quantities,

17. The addition of simple quantities is performed by writing

them one after the other, with the sign + between them ; thus, a

added to b is expressed by a + b. But when it is proposed to

add together several algebraic expressions, we aim at the same

time to simplify the result by reducing it to as small a number

of terms as possible by uniting several of the terms in one.

This is done in articles 2. and 5. by reducing the quantity x -\- x

to 2 X, and the quantity a? + a? + a; to 3 a?. It can take place

only with respect to quantities expressed by the same letters,

and which are for this reason called similar quantities. A literal

quantity that is repeated any number of times is regarded as a

unit ; it is thus, that the quantities 2 a and 3 a considered as two

and three units of a particular kind, form when added 5 a or 5

units of the same kind. Also 4 ab and 5 a 6 make 9ab.

In this case, the addition is performed with respect to the

figures which precede the literal quantity, and which show how

many times it is repeated. These figures are called coefficients.

The coefficient then is the multiplier of the quantity before which

it is placed, and it must be recollected, that when there is none

expressed, unity is understood ; for 1 a is the same as a.

18. When it is proposed to unite any quantities whatever, as

4 a + 5 6 and 2 c + 3 J,

the sum total ought evidently to be composed of all the parts

joined together ; we must write then

4a + 5b + 2c + Sd.
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If we have on the contrary

4a + 5 6 and 2c— 3rf,

the sign — must be retained in the sum, to mark as subtractive

the quantity 3 d, which, as it is to be taken from 2 c, must neces-

sarily diminish by so much the sum formed by uniting 2 c with the

first of the quantities proposed ; we have then,

4a+56+2c— 3rf.

From these two examples it is evident, that in algebra the addi-

tion of polynomials is performed by vrriting in order, one after the

other, the quantities to be added with their proper signs, it being

observed that the terms which have no signs before them are consider-

ed as having the sign -\-.

The above operation is, properly speaking, only an indication

by which the union of two compound quantities is made to con-

sist in the addition and subtraction of a certain number of simple

quantities ; but, if the quantities to be added contained similar

terms, these terms might be united by performing the operation

upon their coefficients.

Let there be, for example, the quantities

4a + 9b— 2c,

2a— 3 c + Ad,

7 6+0 — e;

the sum indicated would be, according to the rule just given,

4a + 9b— 2c + 2a—2c + 4d + 7b + c— e.

But the terms 4 a + 2 a, being formed of similar quantities,

may be united in one sum equal to 6 a.

Also the terms +96 +76 give +166.
The terms— 2 c and — 3 c, being both subtractive, produce

on the whole the same effect as the subtraction of a quantity

equal to their sum, that is to say, as the subtraction of 5 c ; and

as by virtue of the term + c, we have another part c to be added,

there will remain therefore to be subtracted only 4 c.

The sum of the expressions proposed, then, will be reduced to

6a + 166— 4c + 4d— e.

The last operation exhibited above, by which all similar

terms are united in one, whatever signs they have, is called

reduction. It is performed by taking the sum of similar quantities

having the sign +, that of similar quantities having the sign —

,

and subtracting the less of the two sums from the greater, and

giving to the remainder the sign of the greater.

Alg. 4
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It is to be remarked, that reduction is applicable to all algebraic

operations.

The following examples of addition, with their answers, are

intended as an exercise for the learner.

(1.) To add the quantities

7m + 37J— 14j?+ 17r

2a + 9n—llm+ 2r

bp — 4m -j- 8/1

llw — 26 — m— r + 5.

Answer, 7m+37i—14p+17r+3a+9n— 1 lm-|-2r+5p—4m+8»

+ II n— 26 — m— r + 5.

By making the reduction, this quantity becomes

— 9m + 3l7i— 9p + 18r + 3a— 2 6+5,
or 31 n— 9 m—-92?+ 18r + 3a— 2 6+5,
by beginning with the term having the sign +.

(2.) To add the quantities

ll6c+4ac?— 8«c + 5c6?

8ac+ 76c —2ad -\-Amn

2cd — 3«6+5«c + a7i

Oan— 26c— 2ad + bcd.

lib c + 4 ad— 8ac + 5c6Z+8ac + 76c— 2 ad + 4mn
2c d— 3«6 + 5ac+aw + 9a7i— 26c— 2ad-\' b cd.

By reducing this quantity it becomes

16 6c + 5«c + 12c6Z + 4mw— 3a6 + 10an.

Of the Subtraction of Algebraic (Quantities,

20. The subtraction of single quantities, according to estab-

lished usage, is represented by placing the sign — between the

quantity to be subtracted, and that from which it is to be taken
;

6 subtracted from a is written a— 6.

When the quantities are similar, the subtraction is performed

directly by means of the coefficients.

If 3 a be subtracted from 5 a, we have for a remainder 2 a.

With regard to the subtraction of polynomials, it is necessary

to distinguish two cases.

(1.) If the terms of the quantity to be subtracted have each the

sign +, we must clearly give to each the sign —, since it is

required to deduct successively all the parts of the quantity to be

subtracted.
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If for example, from b a— 96 + 2cwe would take

2^ + 3e + 4/,

we must write b a— 9& + 2c— 2 d— 3 e— 4/.

(2.) If any of the terms of the quantity to be subtracted have

the sign —, we must give them the sign plus. Indeed, if from

the quantity a we would take h— c, and should first write a— &,

we should thus diminish a by the whole quantity h ; but the sub-

traction ought to have been performed after having first dimin-

ished h by the quantity c ; we have taken therefore this last

quantity too much, and it is necessary to restore it with the sign +)
which gives for the true result a— b -\- c.

This reasoning, which may be applied to all similar cases, shows

that the sign— of c must be changed into the sign -(- ; and by

connecting this result with the preceding, we conclude that the

subtraction of algebraic quantities is performed by writing them in

order after the quantities
, from which they are to be taken, having

first changed the signs -f- into— and the signs— into +•
After this rule has been applied, the quantities are to be reduc-

ed when they will admit of it, according to the precept given in ar-

ticle 19., as may be seen in the following examples;

(1.) To subtract from 17 a + 2 m — 9b—4c + 2^d
the quantity 51a— 27 6+llc— 4d.

Result 17a + 2m — 96— 4c + 23d[

— 51 a + 27b— ll c + 4d.

When reduced it becomes

— S4a + 2m + lSb—l5c + 27d,

or rather 2m— 24a+l8b—ibc + 21d.

(2.) To subtract from 5 a c— 8'^a J + 96 c — 4am
the quantity Sam— 2ab -^ 11 a c— 7 cd.

Result 5ac — 8 ab + 9 b c — 4am
— 8 am-]- 2 ab— 11 a c -{- 7 cd.

Reduced it becomes

— 6ac— 6a& + ^ ^ ^— 12aw-J-7cc?,

or 96c— 6 ac— Oab— 12 am -{- 7 cd.

Of the Multiplication of Algebraic Quantities.

21. So far as letters are considered as expressing the numeri-

cal values of the quantities for which they stand, muhiplication

in algebra is to be regarded like multiplication in arithmetic.
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{AritL 21, 66«) Thus, to multiply a 6y b is to compound with

the quantity represented by a another quantity, in the same manner

as the quantity represented by b is with unity.

We have already explained in articles 2. and 7. the signs used

to indicate multiplication ; and the product of a by 6 is express-

ed by a X ij or by a . 6, or lastly by a b.

We have often occasion to express several successive multipli-

cations, as that of a by b, and that of the product a 6 by c, also

that of this last product by d, and so on. In this case, it is evi-

dent, that the last result is a number having for factors the num-

bers a, b, c, d, {Arith. 22) ; and to give a general expression of

this method we indicate the product by writing the Jactors compos-

ing it in order, one after the other, ivithout any sign between them ;

we have accordingly the expression ab cd.

Reciprocally every expression, such as abed formed of several

letters written in order one after the other, designates always the

product of the numbers represented by these letters.

I have already availed myself of this method, in which the nu-

merical coefficients are also included, since they are evidently fac-

tors of the quantity proposed. Indeed lb ab cd, designating the

quantity abed taken fifteen times, expresses likewise the product

of the five factors 15, a, b, c, d.

It follows from this, that in order to indicate the multiplication

of several simple quantities, such as 4 ab c, bdef, 3mn, it is

necessary to write the quantities in order, one after the other, with-

out any sign between them, and it becomes

Aab cb d efS m n
;

but since, as is shown in arithmetic, (art. 82.) the order of the fac-

tors of a product may be changed at pleasure without altering the

value of this product, we may avail ourselves of this principle, to

bring together the numerical factors, the multiplication of which is

performed by the rules of arithmetic ; to express then this product,

as indicated in the order 4 . 5 . 3 a 6 c J efm n, we muhiply togeth-

er the numbers 4, 5, 3, which give simply

60 ab cd efm n.^

* As the use of algebraic symbols abridges very much the demon-

stration of this proposition, I hiave thought it proper to suggest Jiere

a method by these symbols.

If we write the product a 6 c cZ e/ as follows, abcXdeXf, and
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23. The expression of the product may be much abridged

when it contains equal factors. Instead of writing several times

in order, the letter which represents one of the factors, it need

be written only once with a number annexed, showing how

many times it ought to have been written as a factor ; but as

this number indicates successive multiplications, it ought to be

carefully distinguished from a coefficient, which indicates only

additions. For this reason, it is placed on the right of the letter

and a litrie higher up, while a coefficient is always placed on the

left and on the same line.

Agreeably to this method, the product of a by «, which would

be indicated, according to article 21., by a «, becomes a^. The

2 raised, denotes that the number, designated by the letter a, is

twice a factor in the expression, to which it belongs. It ought

not to be confounded with 2 a, which is only an abbreviation of

a + a. To render evident the error, which would arise from

mistaking one for the other, it is sufficient to substitute numbers

instead of the letters. If we have for example a = 5, 2 a would

become 2 . 5 = 10, and a^ = a X a = 5 . 5 = 25.

Extending this method we should denote a product in which a

is three times a factor by writing a^ instead of aaa-j also a^

represents a product in which a is five times a facter, and is

equivalent to aa aaa.

24. The products formed in this manner by the successive

multiplications of a quantity, are called in general powers of that

quantity.

The quantity itself, as a, is called the first power.

The quantity multiplied by itself, as a a, or a^, is the second

power. It is called also the square.

The quantity multiplied by itself twice in succession, as a a «,

or a^, is the third power, and is called also the cube.^

change the order of the factors of the product io ed instead of de^

(Arith, 22,) it becomes ab c X e d xf or ab cedf. It is evident

that we may, by analyzing the product diiferently, produce any

change which we wish in the order of the factors of the product in

question.

* The denominations square and cube refer to geometrical con-

siderations. They interrupt the uniformity in the nomenclature of

products formed by equal factors, and are very improper in algebra.

But they are frequently used for the sake of conciseness.
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In general, any power whatever is designated by the number

of equal factors from which it is formed ; a^ or a a a aa is the

'
fifth power of a,

I take the number 3 to illustrate these denominations, and I

have

1st. power 3

2d. 3.3=9
3d. 3 . 3 . 3 == 9 . 3 zz: 27

4th. 3. 3. 3. 3 = 27. 3 = 81

5th. 3 . 3 . 3 . 3 . 3 = 81 . 3 = 243

&;c.

The number which denotes the power of any quantity is called

the exponent of this quantity.

When the exponent is equal to unity, it is not written ; thus a

is the same as a^.

It is evident then, that to find the power of any number, it is

necessary to multiply this number by itself as many times less one,

as there are units in the exponent of the poioer.

25. As the exponent denotes the number of equal factors,

which form the expression of which it is a part, and as the pro-

duct of two quantities must have each of these quantities as fac-

tors ; it follows that the expression a^, in which a is five times a

factor, multiplied by a^, in which a is three times a factor, ought

to give a product in which a is eight times a factor, and con-

sequently expressed by a^, and that in general the product of two

powers of the same number ought to have for an exponent the sum

of those of the multiplicand and multiplier,

26. It follows from this, that when two simple quantities have

common letters, we may abridge the expression of the product of
these quantities by adding together the exponents of such letters of

the multiplicand and multiplier.

For example, the expression of the product of the quantities

a^ b^ c and a^ ¥ c^ d, which would be a^ b^ c «^ b^ c^ d, by the

foregoing rule, art. 21., is abridged by collecting together the

factors designated by the same letter, and

a^ a^ b^ b^ c c^ d,

becomes a^ b^ c^ d,

by writing a^ instead of a^ a^

b^ instead of P b^

c^ instead of c c^ or of c^ c^.
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27. As we distinguish powers by the number of equal factors

from which they are formed, so also we denote any products by

the number of simple factors or firsts which produce them ; and

I shall give to these expressions the name of degrees. The pro-

duct a^ i^ c, Jor example, will be of the sixth degree, because it

contains six simple factors, viz ; 2 factors a, 3 factors 6, and 1

factor c. It is evident that the factors a, 6, and c, here regarded

as firsts, are not so, except with respect to algebra, which does

not permit us to decompose them ; they may, notwithstanding,

represent compound numbers, but we here speak of them only

with respect to their general import.^

The coefficients expressed in numbers are not considered in

estimating the degree of algebraic quantities ; we have regard only

to the letters.

It is evident (21, 25,) that when we multiply two simple quan-

tities the one by the other, the number which marks the degree

of the product is the sum of those which mark the degree of each

of the simple quantities.

28. The multiplication of compound quantities consists in that

of simple quantities, each term of the multiplicand and multiplier

being considered by itself; as in arithmetic we perform the

operation upon each figure of the numbers which we propose

to multiply. (Arith. 33.) The particular products added to-

gether make up the whole product. But algebra presents a

circumstance which is not found in ^numbers. These have no

negative terms or parts to be subtracted, the units, tens, hun-

dreds, &:c. of which they consist, are always considered as

added together, and it is very evident, that the whole product

must be composed of the sum of the products of each part of

the multiplicand by each part of the multiplier.

* We apply the term dimensions^ generally, to what I have here

called degrees, in conformity to the analogy already pointed out in

the note to page 29. This example sufficiently proves the absurdity

of the ancient nomenclature^ borrowed from the circumstance, that

the products of 2 and 3 factors, measure respectively the areas of the

surfaces and the bulks of bodies, the former of which have two and

the latter three dimensions ; but beyond this limit the correspond-

ence between the algebraic expressions and geometrical figures fails,

as, extension can have only three dimensions.
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The same is true of literal expressions when all the terms are

connected together by the sign +•
The product of a + 6

multiplied by c

is ac \-h c^

and is obtained by multiplying each part of the multiplicand by

the multiplier, and adding together the two particular products

a c and I c. The operation is the same when the multiplicand

contains more than two parts.

If the muhiplier is composed of several terms, it is manifest

that the product is made up of the sum of the products of the

multiplicand by each term of the multiplier.

The product of a -[- h

multiplied by c -{- d

C a c -^-h c
^^

X J^ad + hd
for by multiplying first a-\-bhy c, we obtain ac -\-h c, then by

multiplying a + 6 by the second term d of the multiplier, we

have ad -{-}) d^ and the sum of the two results gives

ac-\-hc-\-ad'\'hd

for the whole.

29. When the multiplicand contains parts to be subtracted,

the products of these parts by the multiplier must be taken from

the others, or in other words, have the sign— prefixed to them.

For example,

the product of a— h

multiplied by c

is ac— h c
]

for each time that we take the entire quantity a, which was to

have been diminished by b before the multiplication, we take the

quantity b too much; the product ac therefore, in which the

whole of a is taken as many times as is denoted by the number

c, exceeds the product sought by the quantity 6, taken as many

times as is denoted by the number c, that is by the product b c
;

we ought then to subtract b c from ac, which gives, as above,

ac— be.

The same reasoning will apply to each of the parts of the mul-

tiphcand, that are to be subtracted, whatever may be the num-

ber and whatever may be that of the terms of the multiplier, pro-
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vided they all have the sign +. Recollecting that the terms

which have no sign are considered as having the sign +, we see

by the examples, that the terms of the multiplicand affected by

the sign + give a product affected by the sign +, while those

which have the sign — give one having the sign — . It follows

from this, that wheii the multiplier has the sign -j-, the product has

the same sign as the corresponding part of the multiplicand,

30. The contrary takes place when the multiplier contains

parts to be subtracted; the products arising from these parts

must be put down with a sign, contrary to that which they

would have had by the above rule. This may be shown by the

following example.

Let the multiplicand be a— b

and the multiplier c — d

the product will be [_l'^~l'^.
for the product of the multiplicand, by the first term of the mul-

tiplier, will be by the last example a c— be; but by taking the

whole of c for the multiplier instead of c diminished by d, we

take the quantity a — b so many times too much as is denoted

by the number d ; so that the product a c— be exceeds that

sought by the product of a— b hy d. Now this last is, by what

has been said, ad— b d, and in order to subtract it from the

first it is necessary to change the signs (20). We have then

ac— be— a df -|- 6 6? for the result required,

31. Agreeably to the above examples, we conclude, that the

multiplication of polynomials is performed by multiplying succes-

sively, according to the rules given for simple quantities (21—26),

all the terms of the multiplicand by each term of the multiplier^

and by observing that each particular product must have the same

sign, as the corresponding part of the multiplicand, when the mul-

tiplier has the sign +, and the contrary sign when the individual

multiplier has the sign —

.

If we develope the different cases of this last rule, we shall find,

(1.) That a term having the sign -f-,
multiplied by a term hav-

ing the sign +, gives a product having the sign + ;

(2.) That a term having the sign —, multiplied by a term hav-

ing the sign -|-, gives a product which has the sign —

;

(3.) That a term having the sign -[-, multiplied by a term hav-

ing the sign —,
gives a product which has the sign —

;

dig. 5



34 Elements of Algebra,

(4.) That a term having the sign —, multiplied by a term hav-

ing the sign —
,
gives a product which has the sign -[-.

It is evident from this table, that when the multiplicand and

multiplier have the same sign, the product has the sign
-f-, and

that when they have different signs, the product has the sign —

.

To facilitate the practice of the multiplication of polynomials

I have subjoined a recapitulation of the rules to be observed.

(1.) To determine the sign of each particular product according

to the rule just given ; this is the rule for the signs.

(2.) To form the coefficients by taking the product of those of

each multiplicand and multiplier (22) ; this is the rule for the co-

efficients.

(3.) To write in order, one after another, the different letters

contained in each multiplicand and multiplier (21) ; this is the

rule for the letters.

(4.) To give to the letters, common to the multiplicand and muU
iiplier, an exponent equal to the sum of the exponents of these let-

ters in the multiplicand and multiplier (25); this is the rule for

the exponents.

32. The example below will illustrate all these rules

Multiplicand 6 a^ —2a^b+4a^b^
Multiplier a^ _ 4 a^ 6 + 2 6^

^ , ( 5a'^ —2aH + 4a^b^
bevera ) _20aH + S aH'^— 16aH^
products. ^^ioa^63-4a364+ SaH'

Result reduced 5a'^—22a^b+l2a^b^—6a'^P—4a%'^+Ba%\

The first line of the several products contains those of all the

terms of the multiplicand by the first term a^ of the multiplier
;

this term being considered as having the sign +, the products

which it gives have the same signs as the corresponding terms

of the multiplicand (31),

The first term 6 a^ of the multiplicand having the sign plus,

we do not write that of the first term of the product, which would

be -{- ; the coefficient 6 of a^ being multiplied by the coefficient

1 of a^, gives 5 for the coefficient of this product ; the sum of

the two exponents of the letter a is 4 -|- 3, or 7, the first term of

the product then is 5 a'^.

The second term — 2 a^ 5 of the multiplicand having the sign

—, the product has the sign minus ; the coefficient 2 of a^ 6 muN
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tiplled by the coefficient 1 of a^ gives 2 for the coefficient of the

product ; the exponent of the letter a, common to the two terms

which we multiply, is 3 -|- 3, or 6, and we write after it the

letter b, v/hich is found only in the multiplicand. The second

term of the product then is —,2 a^ b.

The third term ~|- 4 a^ i^ gives a product affected with the

sign -[-, and by the rules applied to the two preceding terms, we
find it to be + 4 a^ i^.

The second line contains the products of all the terms of the

muliiphcand by the second term — 4 a^ 6 of the multiplier. This

last having the sign —, all the products which it gives must

have the signs contrary to those of the corresponding terms of

the multiplicand ; the coefficients, the letters, and the exponents

are determined as in the preceding line.

The third line contains the products of all the terms of the

multiphcand by the third term + ^ i^ of the multiplier. This

term having the sign -}-? all the products which it gives have the

same sign as the corresponding terms of the multiplicand.

After having formed all the several products which compose

the whole product, we examine carefully this last, to see whether

it does not contain similar terms ; if it does, we reduce thera

according to the rule (19), observing that two terms are similar,

which consist of the same letters under the same exponents. In

this example there are three reductions, viz

;

— 2a^b and — 20 a^ b, which give —22aH',
+ 4aH^and+ S aH^, which give -]- 12 aH^

',

— 16 a4 ^3 and + 10 a^ 6^ which give — 6 a^ b\

These reductions being made, we have for the result the last

line of the example.

See another example to exercise the learner, which is easily

performed after what has been said.
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33. From the manner of proceeding in multiplication, it is

evident that if all the terms of the multiplicand are of the same

degree (27), and those of the multiplier are also of the same

degree, all the terms of the product will be of a degree denoted

by the sum of the numbers, which mark the degree of the terms

of each of the factors.

In the first example, the multiplicand is of the fourth degree,

the multiplier of the third ; and the product is of the seventh.

In the second example, the multiplicand is of the sixth degree,

the multiplier of the third ; and the product is of the ninth.

Expressions of the kind just referred to, the terms of which

are all of the same degree, are called homogeneous expressions.

The above remark, with respect to their products, may serve to

prevent occasional errors, which one may commit by forgetting

some of the factors in the several parts of the multiplication.

34. Algebraic operations performed upon literal quantities, as

they permit us to see how the several parts of the quantities

concur to form the results, often make known some general pro-

perties of numbers independent of every system of notation.

The multiplications that follow, lead to conclusions of the great-

est importance, and of frequent use in the subsequent parts of

this work.

a — b a + 6

a^ + ab a^ + ab
— ab—b^ +ab+b^

a^ — b^ a^ +2ab + b^

a^ +2ab + b^

a + b

a"" +2a^b-^ab^
+ a2 & -}-2a62 ^53

a^ 4-3a2 b + ^ab^ + 6^

It appears from the first of these products, that the quantity

a + 6, multiplied by a— 6, gives a^ — 6^ ; whence it is evident

that, if we multiply the sum of two numbers by their difference^ the

product will be the difference of the squares of these numbers.

If we take, for example, the sum 1 1 of the numbers 7 and 4,
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and multiply it by the difference 3 of these nunabers, the product

3 X 11, or 33, will be equal to the difference between 49, the

square of 7, and 16, the square of 4.

By the second example, in which a + & is twice a factor, we

learn ; that the second power, or the square of a quantity composed

of two paints a and b contains the square of the first part, plus

double the product of the first part by the second, plus the square

of the second.

The third example, in which we have multiplied the second

power of a -\-b by the first, shows ; that, the third power or cube

of a quantity composed of two parts contains the cube of the first,

plus three times the square of the first multiplied by the second,

plus three times the first multiplied by the square of the second

plus the cube of the second.

35. As we have often occasion to decompose a quantity into

its factors, and as the algebraic operations are dispensed with,

when it can be done, in order to exhibit the formation of the

quantities to be considered, as distinctly as possible, it is neces-

sary to fix upon some signs proper to indicate multiplication

between complex quantities.

We use indeed the marks of a parenthesis to comprehend the

factors of a product. The expression

(5 «4 _3 ^2 ^2 _[_ 54) (4 ^ 52 _^ c2 + c?3) (&2 _ c2)^

for example, indicates the product of the compound quantities

5^4 — 3«2 52 ^b\ Aab^ — ac^ + ^^ and b^ — c^.

Bars were used formerly by some authors placed over the fac-

tors thus,

5 a* — 3a2 6^ +6* X 4 a 6^ — ac^ + d^ X 6^ — c^
;

but as these may happen to be too long or too short, they are

liable to more uncertainty than the marks of a parenthesis,

which can never admit of any doubt with respect to the quantity

belonging to each factor. They have accordingly been preferred.

Of the Division of Algebraic Quantities.

36. Algebraic division, like division in arithmetic, is to be

regarded as an operation designed to discover one of the factors

of a given product, when the other is known. According to this

definition, the quotient multiplied by the divisor must produce

anew the dividend.
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By applying what is here said to simple quantities we shall

see by art. 21., that the dividend is formed from the factors of the

divisor and those of the quotient ; whence, by suppressing in the

dividend all the factors which compose the divisor, the result will be

the quotient sought.

Let there be, for example, the simple quantity 72 a^ b^ c^ d to

be divided by the simple quantity 9 a^ b c^ ; according to the

rule above given, we must suppress in the first of these quantities

the factors of the second, which are respectively

9, a^, b, and c^.

It is necessary then, in order that the division may be perform-

ed, that these factors should be in the dividend. Taking them

in order, we see in the first place that the coefficient 9 of the divi-

sor, ouglit to be a factor of the coefficient 72 of the dividend, or

that 9 ought to divide 72 without a remainder. This is in fact the

case, since 72 =: 9 X B. By suppressing then the factor 9, there

will remain the factor 8 for the coefficient of the quotient.

It follows moreover, from the rules of multiplication (25), that

the exponent 5 of the letter a in the dividend, is the sum of the

exponents belonging to the divisors and quotient ; this last ex-

ponent therefore will be the difference between the two otliers, or

5— 3 zz: 2. Thus the letter a has in the quotient the exponent

2. For the same reason, the letter b has in the quotient an expo-

nent equal to 3 — 1, or 2. The factor c^ being common to the

dividend and divisor is to be suppressed, and we have

8a^ b^ d

for the quotient required.

The same will apply to every other case ; we conclude then,

that, in order to effect the division of simple quantities, the course

to be pursued is,

To divide the coefficient of the dividend by that of the divisor ;

To suppress in the dividend the letters ivhich are common to it

and the divisor, when they have the same exponent ; and when the

exponent is not the same, to subtract the exponent of the divisor

from that of the dividend, the remainder being the exponent to be

affixed to the letter in the quotient

;

To write in the quotient the letters of the dividend which are not

in the divisor,

37. If we apply the rule now given for obtaining the expo-

nent of the letters of the quotient, to a letter which has the same
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exponent in the dividend and divisor, vje shall find zero to be

the exponent which it ought to have in the quotient 5 a^ divided

by a^, for example, gives a^. To understand what is the im-

port of such an expression, it is necessary to go back to its ori-

gin and to consider, that if we represent the quotient arising

from the division of a quantity by itself, it ought to answer to

unity, which expresses how many times any quantity is contain-

ed in itself. It follows from this, that the expression a° is a sym-

hoi equivalent to unity, and may consequently be represented by 1.

We may then omit writing the letters which have zero for their

exponent, since each of them signifies nothing but unity. Thus

a^ b c^ divided by a^ b c^, gives a^ b^ c°, which becomes a as is

very evident by suppressing the common factors of the dividend

and divisor.

We see by this, that the proposition, every quantity which has

zero for its exponent, is equal to 1, is nothing, properly speaking,

but the explanation of a conclusion to which we are brought by

the common manner of writing the powers of quantities by ex-

ponents.

In order that the division may be performed, it is necessary,

1. that the divisor should have no letter which is not found in

the dividend ; 2. that the exponent of any letter in the divisor

should not exceed that of the same letter in the dividend ; 3.

that the coefficient of the divisor should exactly divide that of

the dividend.

38. When these conditions do not exist, the division can only

be indicated in the manner pointed out in the 2d article. Still

we should endeavour to simplify the fraction by suppressing

such factors, as are common to the dividend and divisor, if there

are any such ; for {Arith 57) it is manifest, that the theory of

arithmetical fractions rests upon principles which are indepen-

dent of every particular value of their terms, and which would

apply to fractions represented by letters, as well as to those which

are represented by numbers.

According to these principles, we in the first place suppress the

numerical factors common to the dividend and divisor, and then

the letters which are common to the dividend and divisor, and which

have the same exponeiit in each. When the exponent is [not the

same in each, we subtract the less from the greater, and affix the

remainder, as the exponent to the letter, which is ivritten only in

that term of the fraction which has the highest exponent.
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The following example will illustrate this rule.

Let 48 a^ b^ c^ d he divided by 64 a^ 6^ c* e ; the quotient can

only be indicated in the form of a fraction

48 a^ b^ c^ d

64^63 c^e*

But the coefficients 48 and 64 being divisible by 16, by sup-

pressing this common factor, the coefficient of the numerator be-

comes 3, and that of the denominator 4. The letter a having

the same exponent 3 in the two terms of the fraction, it follows

that a^ is a factor common to the dividend and divisor, and may

consequently be suppressed.

To find the number of factors b common to the two terms of

the fraction, we must divide the higher b^ by the lower P ac-

cording to the rule above given, and the quotient b^ shows, that

b^ =lP X b^. Suppressing then the common factor 6^, there will

remain in the numerator the factor 6^.

With respect to the letter c, the higher factor being c* of the

denominator, if we divide it by c^ we shall decompose it into

c^ X c^ ; and by suppressing the factor c^ common to the two

terms, this letter disappears from the numerator, but will remain

in the denominator with the exponent 2.

Finally, the letters d and e will remain in their respective

places, since, in the state in which they are, they indicate no

factor common to both.

By these several operations the proposed fraction is reduced to

Sb^d
4 c^ e

^

and it is the most simple expression of the quotient, except we

give numerical values to the letters ; in which case it might be

further reduced by cancelling the common factors as before.

39. It ought to be remarked, that, if all the factors of the divi-

dend enter into the divisor, which besides contains others pecu-

liar to it, it is necessary after suppressing the former to put unity

in the place of the dividend, as the numerator of the fraction. In

this case indeed we may suppress all the terms of the 'numera-

tor, or, in other words, divide the two terms of the fraction by

the numerator ; but this being divided by itself must give unity for

the quotient, which becomes the new numerator.

Suppose, for example, the fraction

4«2 6 c

Wa^b^Td'
Alg. 6
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the factors 12, «,^ 6^, and c may be divided respectively by the

factors 4, a^, 6, and c, or we may divide the two terms of the

fraction by the numerator 4 a^ 6 c. Now the quantity A a^ b c,

divided by itself, gives 1 for the quotient, and the quantity

12 a^ b^ c d, divided by the first, gives by the above rules 3 b^ d

;

the new fraction then is

1

Sb^d'

40. It follows from the rules of multiplication, that when a

compound quantity is multiplied by a simple quantity, this last be-

comes a factor common to all the terms of the former. We may

make use of this observation to simplify fractions of which the

numerator and denominator are polynomials, having factors that are

common to all their terms.

Let there be the expression

9a2 6—.15a2c+"24a3 '

by examining the quantity 6 a^— 2 a^ b c + 12 a^ c^, we see

that the factor a^ is common to all the terms, since a^ =: a^ X a^,

and that, besides, 6, 3, and 12 are divisible by 3 ; so that,

6a4_3a26c+12a2c3 =: 2a^ X Sa^ —be X Sa^-{-4c^X 3a^
Also the denominator has for a common factor 3 a^ ; for the

factors a^ and 3 enter into all the terms, and we have

ga^J— 15a2c + 24a3 = 3 6x3a2 — 5cX 3a2+8a X3a-.
Suppressing therefore the 3 a^ as often in the numerator as in

the denominator, the proposed fraction will become

2a^ — bc + 4:c'^

36-r57IjL8« •

41. I pass now to the case where the numerator and denomina-

tor are both compound, and in which one cannot perceive at first

whether the divisor is or is not a factor of the dividend.

As the divisor multiplied by the quotient must produce the

dividend, it is necessary that this last should contain all the sev-

eral products of each term of the divisor by each term of the

quotient^ and, if we could find the products arising from each

particular term of the divisor, by dividing them by this term,

which is known, we should obtain those of the quotient, after the

same manner as in arithmetic we discover all the figures of the

quotient by dividing successively by the divisor the numbers,

which we regard as the several products of this divisor by the
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different figures of ihe quotient. But in numbers the several

products present themselves in order, beginning with the units at

the last place on the left, on account of the subordination estab-

lished between the units of each figure of the dividend according

to the rank which they hold. But as this is not the case in alge-

bra, we supply the want of such an arrangement by disposing all

the terms of the dividend and divisor in the order of the expo-

nents of the power of the same letter, beginning with the highest

and proceeding from left to right, as may be seen with reference to

the letter a in the quantities

b a:^— 22 aH + 12 aH^— 6 aH^— 4 a^ b"^ + S a^ b\

ba'^— 2a^b+4a^b^,
of which one is the product and the other the multiplicand in the

example of art. 32. This is called arranging the proposed quan-

tities.

When they are thus disposed, it is evident, that whatever be

the factor by which it is necessary to multiply the second to ob-

tain the first, the term 5 a'^, with which this begins, results from

the multiplication of 5 a'*, with which the other begins, by the

term in the factor sought, in which a has the highest exponent,

and which takes the first place in this factor when the terms of it

are arranged with reference to the letter a. By dividing then

the simple quantity 5 a'^ by the simple quantity 5 a^ the quotient

a^ will be the first term of the factor sought. Now as the entire

product ought by the rules of multiplication to contain the several

particular products arising from the multiplication of the whole

multiplicand by each term of the multiplier, it follows that the

quantity here taken for the dividend, ought to contain the pro-

ducts of all the terms of the divisor, 5 a^— 2 a^ 6 + 4 a^ 6^ by

the first term of the quotient a^ ; and consequently, if we subtract

from the dividend these products, which are 5 a*^— 2 a^b -\- 4 a^ 6^,

the remainder — 20 a^b -^^ S a^b^ — (S a^ J3 _ 4 ^3 ^4 ^ 8 ^2 ^5

will contain only those, which result from the multiplication of

the divisor by the second, third, &c. terms of the quotient.

The remainder then n'lay be considered as a part of the divi-

dend, and its first term, in which a has the highest exponent, can-

not be obtained, otherwise than by the multipHcation of the first

term of the divisor by the second term of the quotient. But the

first term of this part of the dividend having the sign —, it is

necessary to assign that which is to be prefixed to the corre-

sponding term of the quotient. This is easily done by the first
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rule art. 31., for the quantity— 20 a^ 6, being regarded as a part

of the product, having a sign contrary to that of the multiplicand

5 a"*, it follows that the multiplier must have the sign— . Divi-

sion then being performed upon the simple quantities,

—

20 a^ h

and 5 a^, gives — Aa^h for the second term of the quotient.

If now we multiply this by all the terms of the divisor, and sub-

tract the product from the partial dividend, the remainder

+ 10 a'* Z>^— 4 a^b^ -\- 8 a^ ^5 ^yj]| contain only the products of

the third &c. terms of the quotient.

Regarding this remainder as a new dividend, its first term

lOa'^b^ must be the product of the first term of the divisor by

the third of the quotient, and consequently this last is obtained

by dividing the simple quantities, lOa^S^and 5 a'*, the one by

the other. The quotient 2 6^ being multiplied by the whole of

the divisor furnishes products, the subtraction of which, exhausting

the remaining dividend, proves that the quotient has only three

terms.

If the question had been such as to require a greater number

of terms, they might evidently have been found like the preceding,

and if, as we have supposed, the dividend has the divisor for a

factor, the subtraction of the product of this divisor by the last

term of the quotient ought always to exhaust the corresponding

dividend.

42. To facilitate the practice of the above rules

;

(1.) We dispose the dividend and divisor, as for the division of

numbers, by arranging them with reference to some letter, that is,

by writing the terms in the order of the exponents of this letter, be-

ginning with the highest

;

(2.) We divide the first term of the dividend by the first term

of the divisor, and write the result in the jflace of the quotient ;

(3.) We multiply the whole divisor by the term of the quotient

just found, subtract it from the dividend, and reduce similar terms ;

(4.) We regard this remainder as a new dividend, the first term

of which we divide by the first term of the divisor, and write the

result as the second term of the quotient, and continue the operation

till all the terms of the dividend are exhausted.

Recollecting that when a product has the same sign as the

multiplicand, the multiplier has the sign -\-, and, that when a

product has the contrary sign to that of the multiplicand, the

multiplier has the sign— (31), we infer that, when the term of
the dividend and the first term of the divisor have the same sign, the
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quotient ought to have the sign -f-, and, if^hey have contrary signs,

the quotient ought to have the sign — ; this is the rule for the signs.

The individual parts of the operation are performed by the

rule for the division of simple quantities.

W^e divide the coefficient of the dividend by that of the divisor ;

this is the rule for the coefficients.

We write in the quotient the letters common to the dividend and

divisor with an exponent equal to the difference of the exponents of

these letters in the two terms, and the letters which belong only to

the dividend ; these are the rules for the letters and exponents.

43. To apply these rules to the quantities,

5a'^— 22aH+l2 a^ i^ _ (3 ^4 ^3_ 4 ^3 ^4 _|_ g ^2 js^

ba^— ^a^'b + Aa^b^,

which have been employed as an example above, we place them

as we olace the dividend and divisor in arithmetic.

Dividend,

5a''—22a%+12a^62_.(3^4j3_4^354^3^2ji

_-5a7^ 2a^b—4a^b^

Divisor.

5a^—2a^b+4a^b^

(Quotient.

-4a"bA-2b'

Rem.—20a%+8a^b^—6a'^b^—4a^b'^+Sa^b^

+20a%—8a^b^+ l6a^b^

rem. j^i0a^b^—4a^b'^+Sa^b^

—lOa'^+bHa^^—ea^b^

0.

The sign of the first term 5 a'^ of the dividend being the same

as that of 5 a^, the first term of the divisor, the sign of the quo-

tient must be +, but, as it is the first term, the sign is omitted.

By dividing 5 a'^ by 5 a'*, we have for the quotient a^, which we

write under the divisor.

Multiplying successively the three terms of the divisor by the

first term a^ of the quotient, and writing the products under the

corresponding terms of the dividend, the signs being changed to

denote their subtraction (20), we have the quantity

— 5a'' + 2a^b—4aH^,
which with the dividend being reduced, we obtain for a remainder

— 20 aH + 8 a^^ —6 a^b^— 4 aH^ + 8 a^ b^.

By continuing the division with this remainder, the first term

— 20 a^ b, divided by 5 a^ will give for a quotient 4 a^ b, this

quotient having the sign —, as the dividend and divisor have
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different signs. Multiplying it by all the terms of the divisor

and changing the signs, we obtain the quantity

20aH— SaH^ + 16 aH^,

which taken with the dividend and reduced, gives for a remainder

+ 10a^b^— 4aH^ + S a^ 6\

Dividing the first term of this new dividend, 10 a^b^, by the

first term, 5 a\ of the divisor, and multiplying the whole divisor

by the result +2 6^, writing the products under the dividend,

the signs being changed, and making the reduction, we find that

nothing remains, which shows that + 2 6^ is the last term of the

quotient sought. The quotient therefore has for its expression

44. It is proper to remark here, that in division, the multipli-

cation of the different terms of the quotient by the divisor often

produces terms that are not to be found in the dividend, and

which it is necessary to divide by the first term of the divisor.

These terms are such as destroy themselves, since the dividend

has been formed by the multiplication of the two factors, the

quotient and the divisor. See a remarkable example of these re-

ductions
;

Let a 2 — b^ be divided by a— b.

Division, Multiplication,

a — b

a^ + a^ by^-^ab + b^

J^a^b~b^
~aH + ab^

+ ab^ —b^— ab^ +63

— b

+ ab + b^

+ a^ b-

+ ab^

— a^ b

ab^
63

Resuh a3— ja^

The first term a^ oi the dividend, divided by the first term a

of the divisor, gives for the quotient a^ ; multiplying this quotient

by the divisor, and changing the signs of the products, we have

— a^ -{- a^ b; the first term — a^ destroys the first term of the

dividend, but there remains the term a^ 6, which is not found at

first in the dividend. As it contains the letter a, we can divide

it by the first term of the divisor, and obtain + a 6. Multiplying

this quotient by the divisor, and changing the signs of the pro-

ducts, we have— a^ 6 + a 6^
; the term— a^ b cancels the one

above it, but there remains the term +^6^, which is not in the
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dividend. This being divided by a gives for the quotient + b^ ;

muhiplying this quotient by the divisor and changing the signs, we

have — a b^ + ^^
? the first term — a b^ destroys the first term

of the dividend, and the second +6^ destroys the other — b^.

The mechanical part of the operation will be better understood,

if we look for a moment at the multiplication of the quotient

a^ -{- a b -{- b^ by the divisor a— b. We see that all the terms

reproduced in the process of dividing are those which destroy each

other in the result of the multiplication.

45. It sometimes happens that the quantity, with reference to

which the arrangement is made, has the same power in several

terms both of the dividend and divisor. In this case, the terms

should be written in the same column, one under the other, the

remaining ones being disposed with reference to another letter.

Let there be

— a^Js ^^2c4_«2 c4_a6_j,2a4c2 +b^ + 2b'^c^ + a^ b\

to be divided by a^ — b^ — c2.

Arranging the first of these quantities with reference to the

letter a, we place in the same column the terms — a"^ b^ and

-^ 2 a"^ c^ ; in another, the terms + a^ b* and — a^ c* ; and in the

last column, the three terms +6^, + 2 6^ c 2, -{- &2 ^.4^ dispos-

ing them with reference to the letter 6, as may be seen in the next

page.

The first term a^ of the dividend being divided by the first

term a^ oi the divisor, gives for the first term of the quotient

— a^ ; forming the products of this quotient by all the terms of

the divisor, changing the signs of the products in order to sub-

tract them from the dividend, and placing in the same column

the terms containing the same power of a, we have, after the

reduction of similar terms, the first remainder, which we take for

the second dividend.

The first term

—

2a'^b^ of this new dividend, being divided

by a^, gives for the second term of the quotient— 2 a^ b^ ; form-

ing the products of this quotient by all the terms of the divisor,

changing the signs of the products to indicate their subtraction

from the dividend, and placing in the same column the terms con-

taining the same power of a, we have, after the reduction of simi-

lar terms, the second remainder, which we take for the third

dividend.

The operation being continued in the same manner with the
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second remainder and the following ones, we shall have three

terms in the quotient. The last being multiplied by all the terms

of the divisor, furnishes products which, being subtracted from

the fourth remainder, exhaust it entirely. As the division admits

of being exactly performed, it follows, that the divisor is a factor

of the dividend.

^2 1)2 f.2

+ b^ c*

1st. rem.— 2 a'^ b^ + a^ b"" + b^

+ b^c'
+ 2a4j2 _2a^b^

— 2a^ b^c^

2d rem. + a"^ c"" — a^ b^ -}-P— 2a^ b^ c^ +26^ c^

— a'^c- -\- a^ §2 ^2

3d rem. — a^ 6^ ^ ^6

— a2 62 c2 -\-2b* c^

+ b^ c^

4. a2 j4 _j6
— ft^c^

4th rem. — a* 6^ (,2 j^ j4 ^3

+ a^ 62 ^2 — j4 ^2

— i^c*

46. The form under which a quantity appears, will sometimes

immediately suggest the factors into which it may be decom-
posed. If we have, for example,

Sa^— 4a3 J2 -^4a^ +2a^~b^ +\,
to be divided by 2 a^— J2 _f_ j . ^s the divisor forms the three

last terms of the dividend, it is only necessary to see if it is a fac-

tor of the three first ; but these have obviously for a common fac-

tor 4 a% for 8a^— 4a3 J2 ^4^3 —4 ^3 ^2a^ — b^ + 1).
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The dividend then may be represented by

or (2 a^—b^ + 1) (4 a^ + 1).

The division is performed at once by suppressing the factor

2a^ — 6^ + 1, equal to the divisor, and the quotient will be

4a^ + 1.

After a little practice, methods of this kind will readily occur,

by which algebraic operations are abridged.

By frequent exercise in examples of this kind, the resolution of

a quantity into its factors is at length easily performed ; and it is

often rendered very conspicuous, when, instead of performing the

operations represented, they are only indicated.

Examples in Multiplication of Compound Quantities,

1. (3a+36 + 4c)XC3a + 36— 4c)

=z9a^+ lSab + 9b^—l6c^.

2. (4a + 4 6 — 3c— 6df)x(4a+46-f3c + 6 6?)

= 16 a^ + 32 ab + 16 b^— 9 c^— 36 c d— 36 d^.

3. {5a^— 3ab + 7b^)X {3 a— b)

= lba^—14a^b+24ab^— '7P.

4. {bab + 3 ac— 4:bc) Xi'^ ab— IS ac+2bc + d)

z=z3ba^b^— 69 a^bc— IS ab^ c + b abd— b4a^c^

+ IS ab c^ +3 a c d—S b^ c^ —4 b c d.

5. (a + b + c + d) X {a— b— c— d)

— a2_ 52_ 2 6 c— 2 6 fZ— c^— 2 c ^— cP.

6. (_2a + 3&— c^) X (— 3/— 7a + c2)

= 6 af— 9 bf+ 3c^f+Ua^— 21 ab + bac^

^Sbc^— c\

7. (3 a + 4 c— 5 6/) + (6 6— 7 n— 6 m) X (3 a + 4c

_5^)_(66_7w— 6 m)

= 9a^ + 24:ac— 30ad+16c^—40cd + 25d^

— 36 U^ + S4 bn— 49 n^ + 12 mb— S4nm— 36 mK

Examples in Division of Compound (Quantities.

1. (4ac-~ 2ad[e)-4-2a = 2c— 2rfe.

2. (8a2— 6a6)-i 2a=— 4a + 3 6.

3. {ab— ac)'^(b— c) = a.

4. (ac— bc-^ad— bd)'^{a— 6) = c + df.

Alg. 7
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8

= 2a + 36— 5 a?.

6. (4a?3 + 4a?2_29a? + 21)H-(2a?— 3)

7. (36 a^— 12 a 6 + 4 6^— 3 6 a c + 12 6 c + 9 c^) -^(6 a

—2&— 3c)

= 6 a— 2 6— 3 c.

(a8_464) -H (a^ + 2 6^) =za'^— 2 b^.

9. (a4_92 52_6^5c2_c4J_^(^2_3^J_^2j
= a2 _|, 3 a J + c2.

10. (d4a^ + 64 ab + 16 b^— 9 d^— 48 d— 6 4) -^ (S a

+ 4b+Sd+8)
=,Sa + 4b— Sd—8.

{S2a^ + b^)-^{2a + b)

=zl6a^— 8a:n + 4a^b^— 2aP + b\

{18 a^ + 2S ab + 42 a c— 12 a d— 20 b^ + 124 b c

+ 8bd—16c^—22cd)-^{6a + idb— 2c— 4d)

z=:Sa— 2b + 8c.

11

12

Of Algebraic Fractions.

47. When we apply the rules of algebraic division to quanti-

ties, of which the one is not a factor of the other, we perceive

the impossibility of performing it, since in the course of the oper-

ation we arrive at a remainder, the first term of which is not

divisible by that of the divisor. See an example
;

1st rem.

«3 j^a^.f) + 2b^ a2 4.52

— a3 — ab^ a +6

a^ b— ab^ +2b^
-a^ b— b^

— ab'-+bK
The first term, — ab^, of the second remainder cannot be divid-

ed by a^i the first term of the divisor; so that the process is

arrested at this point. We can however, as in arithmetic, annex

to the quotient a + 6 the fraction—TjCU— ' having the re-

mainder for the numerator, and the divisor for the denominator

;

and the quotient will be
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It is evident, that the division must cease^ when we come to a

remainder^ the first term of which does not contain the letter with

reference to which the terms are arranged, or to a power inferior to

that of the same letter in the first term of the divisor.

48. When the algebraic division of the two quantities cannot

be performed, the expression of the quotient remains indicated

under the form of a fraction, having the dividend for the nume-

rator, and the divisor for the denominator ; and to abridge it as

much as possible, we should see if the dividend and divisor have

not common factors, which may be cancelled (38). But when

the terms of the fraction are polynomials, the common factors are

not so easily found, as when they are simple quantities. They

are in general to be sought by a method analogous to that, which

is given in arithmetic for finding the greatest common divisor of

two numbers.

We cannot assign the relative magnitudes of algebraic expres-

sions, as we do not give values to the letters which they contain

;

the denomination of greatest common divisor therefore, applied to

these expressions, ought not to be taken altogether in the same

sense as in arithmetic.

In algebra, we are to understand by the greatest common divisor

of two expressions, that which contains the most factors in all

its terms, or which is of the highest degree (27). Its determina-

tion rests, as in arithmetic, upon this principle ; Every common di-

visor to two quantities must divide the remainder after their division.

The demonstration given in arithmetic (art. 61.) is rendered

clearer by employing algebraic symbols. If we represent the

common divisor by jD, the two quantities proposed might be

expressed by the products AD and jBD, formed from the com-

mon divisor and the factor by which it is multiplied in each of

the quantities. This being supposed, if Q stands for the entire

quotient, and R for the remainder resulting from the division of

AD by BD, we have AD =zBD X Q + -R {^rith. 61) ; divid-

ing now the two members of the equation by D, we obtain

and since the first member, which in this case must be composed

of the same terms, as the second, is entire, it must follow^ that

yz is reduced to an expression without a divisor, that is to say,

that R is divisible by D.
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According to this principle, we begin, as in arithmetic, by

inquiring whether one of the quantities is not itself the divisor of the

other ; if the division cannot be exactly performed, we divide the

first divisor by the remainder, and so on ; and that remainder,

which will exactly divide the preceding, will be the greatest common

divisor of the two quantities proposed. But it will be necessary, in

the divisions indicated, to have regard to what belongs to the na-

ture of algebraic quantities.

We are not, in the first place, to seek a common divisor of two

algebraic quantities, except when they have common letters j and

we must select from them a letter, with reference to which the

proposed expressions are to be arranged, and that is to be taken

for the dividend in which this letter has the highest exponent, the

other being the divisor.

Let there be the two quantities

3a3 — 3a2 6+a62 — 6%
4«25— ^ab^+b^,

which are already arranged with reference to the letter «; we

take the first for the dividend, and the second for the divisor.

A difficulty immediately presents itself, which we do not meet

with in numbers, and this is, that the first term of the divisor

will not exactly divide the first term of the dividend, on account

of the factors 4 and b in the one, which are not in the other. But

the letter b being common to all the terms of the divisor and not

to those of the dividend, it follows (40) that 6 is a factor of the

divisor, and that it is not of the dividend. Now every divisor

common to two quantities, can consist only of factors which are

common to the one and to the other ; if then there be such a di-

visor with respect to the two quantities proposed, it is to be looked

for among the factors of the quantity Aa^ — 5 a 6 -f-ft^, which

remains of the quantity 4:a^b— bab^ + 6 ^^ after suppressing

b ; so that the question reduces itself to finding the greatest com-

mon divisor of the two quantities

Sa^ — Sa^b -{^ab^ —b^,
4a^—^ab -^bK

For the same reason that we may cancel in one of the pro-

posed quantities the factor b which is not in the other, we may

likewise introduce into this a new factor, provided it is not a

factor of the first. By this step, the greatest common divisor,

which can consist only of terms common to both, will not be
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affected. Availing myself of this principle, I multiply the quan-

tity 3 «3 — 2a-b + ab^ — b^ by 4, which is not a factor of

the quantity 4 a^ — b ab +b^/m order to render the first term of

the one divisible by the first term of the other.

I shall thus have for the dividend, the quantity

12a3_i2a2 i^4ab^—4b^,
for the divisor the quantity

4a^ —dab + b^,

and the quotient will be 3 a.

Multiplying the divisor by this quotient, and subtracting the pro-

duct from the dividend, I have for a remainder

3a2 J -^ab^ —4b^;
a quantity which, according to the principle stated at the com-

mencement of this article, must have with 4 a^ — 5 a 6 + 6^, the

same greatest common divisor as the first.

Profiting by the remarks made above, I suppress the factor 6,

common to all the terms of this remainder, and multiply it by 4,

in order to render the first term divisible by that of the divisor; I

have then for a dividend, the quantity

12a^ +4a6— 166%
and for a divisor, the quantity

4a^ — dab + b^ ',

and the quotient thence arising is 3.

Multiplying the divisor by the quotient, and subtracting the pro-

duct from the dividend, we obtain the remainder

19ab—19b^,
and the question is reduced to finding the greatest common divisor

to this quantity, and

4a^—5ab + b\
But the letter a, with reference to wich the division is made, not

being in the remainder, except of the first degree, while it is of

the second degree in the divisor, it is this which must be taken for

the dividend, and the remainder must be made the divisor.

Before beginning this new division, I expunge from the divisor

19 a 6— 19 62
J
the factor 19 6, common to both the terms, and

which is not a factor of the dividend ; I have then for a dividend,

the quantity

4a^ — 5ab + b^,

and for a divisor

a— b.
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The division leaves no remainder ; so that a— & is the greatest

common divisor required.

By retracing these steps, we may prove a posteriori, that the

quantity a— b must exactly divide the two quantities proposed, and

that it is the most compounded of those which will do it. In di-

viding by a— b the two quantities proposed,

Sa^—SaH + ab^—b^, 4 a^ b— 5 ab^ +b'',

we resolve them as follows
;

(Sa^ + b^) (a— b), (4ab— b^) {a— b).

49. When the quantity, which we take for a divisor, contains

several terms having the letter, with reference to which the

arrangement is made, of the same degree, there are precautions

to be used, without which the operation would not terminate.

See an example of this.

Let there be the quantities

a^ b + ac^ — d^, ab— a c + d^
;

if we make the preparation as for common division,

a^ b + ac^ — d^

-a^ b + a^ c-^ad^
ab— ac -\- d"^

a

Rem. a^ c -^'a'c^—ad^— c?%^

by dividing, first, a^ b by a 6, we have for the quotient a ; multi-

plying the divisor by this quotient, and subtracting the products

from the dividend, the remainder will contain a new term, in

which a will be of the 'second degree, namely, a^ c, arising from

the product of— ac by a. Thus no progress has been made ;

for by taking the remainder

a^ c+ac^ — ad^ — d""

for a dividend, and multiplying by 6j to render the division possible

by a b, we have

a^ bc + abc^ — abd^ —bd^— a^ b c -\- a^ c^ — a c d^

ab— a c -{- d^

ac
Rem. a/^ c^ -\- ab c^ — a c d^ — abd^ — bd^,

and the term — ac produces still a term a^ c^, in which a is of

the second degree.

To avoid this inconvenience, it must be observed, that the

divisor ab— a c -{- d^ := a (b— c) -f- c?^, by uniting the terms

ab — a c in one ; and, for the sake of shortening the operation,

making b— c =: m, we have for the divisor am -\- d^ ; but then

the whole dividend must be multiplied by the factor m, to make

a new dividend, the first term of which may be divided by a m,

the first term of the divisor j the operation then becomes
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a^ bm -^-ac^ m— d^ m
— a^bm— ahd^

1st rem. — a b d^ -\- ac^ m— d^ m
'— ac^ m — c^ d^

ab -j- (

2d rem. — abd^ — c^ d^ — d^ m.

The terms involving a^ n'ow disappear from the dividend, and

there remain only the terms which have the first power of a.

To make these disappear, we first divide the term a c^ m hy am,

and it gives for a quotient c^ ; multiplying the divisor by this

quotient, and subtracting the products from the dividend, we obtain

the second remainder. Taking this second remainder for a new

dividend, and suppressing the factor d^, which is not a factor of the

divisor, we have

— ab— c^ — dm,

which being multiplied anew by m, becomes

— ab m— c^ m— dm^
+ abm + bd^

am -\- d^

~—b'~^~
Rem. -{- b d^ — c^ m— dm^.

The remainder b d^ — c^ m— d m^ of this last division, not in-

volving a, it follows, that if the proposed quantities have a common
divisor, it is independent of the letter a.

Having arrived at this point, we can continue the division no

longer with reference to the letter a; but it will be observed,

that if there be a common divisor, independent of a, to the quan-

tities b d^ — c^ m— d 7n^ and am-\- d^, it must divide separately

the two parts a m and d^ of the divisor; for if a quantity is arrang-

ed with reference to the powers of the letter a, every divisor of

this quantity, independent of a, must divide separately the quanti-

ties multiplied by the different powers of this letter.

To be convinced of this, we need only observe, that, in this

case, each of the quantities proposed must be the product of a

quantity depending on a, and of the common divisor, which does

not depend upon it. Now if we have, for example, the expression

Aa'' +Ba^ + C^a^ +Da+E,
in which the letters A, B, C, D, E, designate any quantities

whatever, independent of a, and it be multiplied by a quantity M)
also independent of a, the product

MAa^ +MBa^ +MCa^ +MDa+ME,
arranged with reference to a, will contain still the same powers
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of a as before 5 but the coefficient of each of these powers will be

a multiple ofM.
This being supposed, if we restore the quantity {b— c) in the

place of m, we have the quantities

id^ — c^ {h— c)—d[b—cY,
a[b— c)+d^',

and It is evident, that b— c and d^ have no common factor •

the two quantities then under consideration have not a common
divisor.

If it were not evident by mere inspection, that there is no

common divisor between 6— c and d^, it would be necessary to

seek their greatest common divisor by arranging them with refer-

ence to the same letter, and then to see if it would not also divide

the quantity

6rf2 —c^ [b—c)—d{b— cY.
50. Instead of putting off to the end of the operation, the inves-

tigation of the greatest common divisor independent of the letter

with reference to which the quantities are arranged, it is less

trouble to seek it at first, because, for the most part, the operation

becomes more complicated at each step as we advance, and the

process is rendered more difficult.

Let there be, for example, the quantities

^4 j2 _|_^3 53 -1-64^2 — a^ c2

—

a"" b c^ — 62 ^4^

a^ b -{- ab^ +b^ — a^ c— ab c— b^ c;

having arranged them with reference to the letter cr, we have

(J2 —c^) a* j^ (63_5c2) a^ + i4 c^ _l2f.A^

{b—c) a^ + (b^—bc) a + P— b^ c;

I observe, in the first place, that if they have a common divisor

which is independent of a, it must divide each of the quantities,

multiplied by the different powers of a (49), as well as the

quantities J* c^ — b^ c^ and b^ — b^ c, which do not contain this

letter.

The question is reduced then to finding the common divisors of

the two quantities b^ — c^ and b— c, and determining whether

among these divisors there is to be found one which will divide at

the same time

J3 — 5^2 and b^— be, b^ c^ — b^ e* and J^ — J2 c.

Dividing h^ — c^ by J — c, we find an exact quotient b -\~ c
;

J— c then is a common divisor of the quantities b^— c^ and

I— c, which evidently admit of no other, since the quantity b— c



Algebraic Factions. bl

is divisible only by itself and by unity. We must now see wheth-

er^6— c will divide the other quantities referred to above, or

whether it will divide the two quantities proposed 3 it is found that

it will, and it gives

{b + c) a* -|- (62 J^bc) a"" -\-b^c^ + b^ cS
a^ ^ba + b^.

To bring these last expressions to the greatest degree of sim-

plicity, we should see if the first is not divisible by 6 + c; it ap-

pears upon trial that it is, and we have only to find a common
divisor to the quantities

a* -f-
6^2 ^ 52 ^2

a^ -{-ba +62.
By proceeding with these as the rule prescribes, we come,

after the second division, to a remainder containing the letter a of

the first power only ; and as this remainder is not the common
divisor, we conclude that the letter a does not make a part of the

common divisor sought, which therefore can consist only of the

factor b— c.

If, beside this common divisor, another had been found, involv-

ing the quantity a, it would have been necessary to multiply these'

two divisors together to obtain the common divisor sought.

These remarks will enable the learner, after a little practice im

analysis, to find in every case the greatest common divisor. He'

will determine without difficulty that the quantities

6a^ + 15a^6— 4 a^c^ — 10 a2 Jc^,

9a^b— 21a^bc— (fabc^+lSbc^,
have for their greatest common divisor the quantity 3 a*— 2 c*.

51. The four fundamental operations, addition, subtraction,

multiplication, and division, we perform in algebra as in arithmetic,

observing merely to proceed, in the operatioiis prescribed by the

rules of arithmetic, according to the methods given for algebraic

quantities. I shall, therefore, merely suggest these methods,

giving an example of the application of each. I shall begin as I

did in arithmetic, with the multiplication and division of fractions^

as they require no preparatory transformations.

(1.) For multiplication, we have

I
X c =~ {Jrith. 53),

Alg. 8
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(2.) For division,

T divided by c, gives ^— or^ X ~ {Ariih. 54, 70),

^ divided by ^, gives - x - = y-; (.^ri^/i. 73).

(3.) The fractions r?
-f',

being reduced lo the same denomina-

tor, become respectively

The fractions,

a c e g
b' d' f V

by the same reduction, become respectively

adfh cbfh ebdh gbdf
bdfh' bdfli' bdfh' bdflC

52. I have given, in art. 79. of arithmetic, a process for obtain-

ing, in certain cases, a denominator more simple, than that which

resuhs from the general rule ; it may be much simplified by means
of algebraic symbols, as we shall see.

If, for example, we have the two fractions y— , t-c, it is easv to
be oj

see that the two denominators would be the same, if/ were a

factor of the first, and c a factor of the second ; we multiply then

the two^ terms of the first fraction by /, and the two terms of the

second by c, which gives 7^^. and £^, more simple than ,^, "^.^ beJ b ey ' b b ef

and
^ ^ ^ > , obtained by multii>lying by the original denominators.

In general, to form the common denominator^ we collect into 07ie

product all the different factors raised to the highest potverfound in

the denominators of the proposed fractions ; and it remains oyily to

multiply the numerator of each fraction by the factors of this pro-

duct^ which are wanting in the denominator of the fraction.

Having, for example, the fractions -r^-, 7-7;, and—, Iform the° - b^ e bf c g^

product b^cfg; I multiply the numerator of the first fraction

hyfg, that of the second by beg, that of third by b^f and I

obtain

afg bcdg b^ ef
b^cfg^' b^cfg' b^'cfg
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53. The sum of the fractions

a h c

d' d' 5'

which have the same denominator, or

d + d + d=^
-^^ (^n<A. 80).

The difference of the fractions

a , h

which have the same denominator, or

a h a— h

d d d

The whole of a added to the fraction -, or the expression

a4"-=^ — +-==^ — {Arith. 81).

Also, the expression

b a c b ac— b

c
~~'

c c c

Reciprocally,

, . ac 4- b ac , b , b
the expression '— r= [--.=z:a-{ ;

, . a c — b ac b b
the expression =2 =a .

' c c c c

The terms of the preceding fractions were simple quantities ; but

if we had fractions, the terms of which were polynomials, we

should have to perform, by the rules given for compound quanti-

ties, the operations indicated upon simple quantities ; it is thus that

we have

a^ + b^ a—b __ (g^ -\-b^) {g—h) _ a^+ ab^ -~- a'^ b —b^
c-^d ^ c— d'~ {c-\-d){c^^^^d)~'~' ' 't^'^d^

The quotient of the fraction

-^^ divided by 3-—^,

• 2!JL^ c— ^ _ {^g2 J^h'^) [c-'d) _ a^c+bH-^a^d-^b^-d
'^

c + dT^a^^'" (c-f^)(«— 6)
" ac-^-ad-^bc-^bd'

and so of other operations.

54. Understanding what precedes, we can resolve an equation

of the first degree, however complicated.

If we have, for example, the equation

(a + b) ix-^} ^4b=i2x—
i

a— b
' 3a+6'
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we begin by making the denominators to disappear, indicating only

the operations ; it becomes then

(tt_j-J)(a?_c)(3a+&)+4&(a-6)(3a-|-6)=2a?(a-6)(3a+6)-ac(a-J)5

performing the multiplications, we have

Sa^x + Aabx + b^ x— 'Sa^ c— Aahc—b^c+l2a^h—^ab^—AlP
zzz^a^ X— 4a 6 a?— 2b^ x— a^ c -\- ab c;

transposing to one member all the terms involving x, it becomes

—Sa^x+Sabx+Sb^x = 2aH + babe+ bH—l2a^b+8ab^ +4b%
from which we deduce

2a^c + 5abc+b^c— 12a^ b + Sab^'h^b^^~ ^Sa^+8ab+Wb^ •

Examples in Division in which the Divisor is not an Aliquot Part

of the Dividend.

1. 1 -r- (1 — 6) = 1 + 6 + 62 ^ 63 + 64 ^
2. 1-^(1 +6)= 1—6 + 62— 63 + 64—

o . / L\ c . be . b^ c . b^c .

3. c -4- («— 6) = - + — 4 ^ + _- +

A . / I i\ ^ be
. b^ c b^c .

4. c -H (a + 6) = ^ -{ ^ +
\ * ^ a a^ ^ a^ «4 »

f>. (l + a?)-H-(l— a?)z= l+^ll-=i+2a;+2^2+2a;3+

Examples in the Reduction of Fractions.

3a c
,

j^ __ i2ad+6bc + 2(ibdh
' 56+45+ 20TS

•

^- 6 + rf / A '^

^ adfh-^bcfh— bdeh—bdfg—bdfhlc

Q 1 1 1^ 1 be— ac + a6
a o ' c ao

c

(? c _ («— 6) efg—dg— cf

5. c + 2a6— 3ac ^—^—Hl^

_ 2a63 -^ 6 c^ + 3 a6c2 — a3—
b^— bc

^ 5a+ 6c , 5a — 6c
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4,cg + n 4cg —n _
7. g 2

- «.

Qa— ib 2a—b— c ,
15 a— 4 c _ 85a— 20

6

8.
^^ g h j2 — 84 •

3a+26 5bd— 2a--Sd _12ad+9bd+^a+_3d
c "4crf 4 erf

10. _fL_ + ^_=£i+^
a-|-2J a — z a^— z^

12.

5_j_a; a— x/* 2a; 2a:(a^— x*)

az a— z 3az— a^ — z^

a^— z^ a-j-z «2.

3

«3 ab b _ q3_|_a6g4- &3

^^-
(a+ 6)^ («+ 6)" +a + 6— (a 4-6)=

3A
,

2A+X 5
14. /y._o^x. +(A— 2a;)2

~ (h+x){h^2x) h—x
— 20 A a;-- 22 a;^

-"(A— x) (h^ ^Ahx+ ^kx'^y

Examples in the Reduction of Fractional Expressions to their Sim-

plest Terms*

ax + x^ a + X

2.

3.

36x— ex 36

—

c'

Ua^— 7ab _7a
10 a c — 5bc 5 c*

12a3x^-f 2a^x5 ^ 2a^x^

18a62a; + 3 62a;2 •~""T6^*

5a^ +5a X 5 a

^2— x^ a — x"

^3— a;3 a2 _^^a;_j_a;2

(a— x)2 a— a:

w3^2w2 n2

n* — 4w-|-4 n— 2*

a;2 ^ 2 X— 3 _ X—

1

a;2
-J- 5 a;— 6 x

-f-
2*

2x3+3x2 + x_2x-}-l
x3— x2 — 2x X—^2*

a3 63^ ^3 x3 __ a2 52_ 05 6 c X + c^ a;>

a26* -^03x2
"""

a6— ex
*9.
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11.

12.

13.

a;4

—

X a;2_|_2;_|^l

a^^b^^c^ j^2ab + 2ac + 2b c _ a-\-b + c

a^ — Ij2 — c2 — 2b c
~ ""

a— b— c

a2^^ab + ac + 2b^—2hc __ a— 2b

{a -f 6) (g 4- & + c) (r/;+ 6 — c
)

2 a^ 62+2 a^c^ + 2 6^ t2— «4-ir64_ ^4

— {(^+b) (a + b + c) (a + b— c)

— 4 62 ^2— (a2— 62 ~- c2)2

a+Jb
(c+ a— b){b— cL-{-cy

Examples in the Multiplication of Fractional Expressions,

, 1 Sac c 3c2
1- - X -7- X - — -2-.

a X X x-^

13 c 6h , ^ ,\ Sa
i>d

3a2 39 ac IS a h , 21a

2 /^^_l^-^_Ai r 7rf>ix^

"~ 6^ lOc/2 25 6^^^ 5 *

Qr; ^ 49^2 10/2 7/2 6/2

Vx2 2a;y ^y^y ^ V^ a;2 ^xy^y'^J

_ 3_a4 _ 19 a3^ 21_a2^ ^ 9^53 54

"^^4" I0x3y + 5¥2-y2 10X3/3 +P
Examples in the Division of Fractional Expressions,

— —- — ab
c ' c

ab+ x^a .
a __ b^ + bx^

a'^cx^— cx^-^a^dx"^— dx^
. a^ a;4— a:? c-[-r?

ac— ad -j- ex— dx ' a-\-x c— d*

24.a^ c— ^b'' c--'4.a^d-\-b^d^ A.a^'— b^ ^hc— d
^' 32a6 + 8an + 462+6n * Sa+b "~ JT+n '
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^ /o 9 7a6 21 a c 5 fi' 83 5 c Sc^\
6. (^3«^ 3- 5 2- + -8 2-)

H- (^3 a — 5 6 + ^"^ = a + | — 2 c.

Equations of the First Degree with One Unknown Quantity.

1. 8a?— 5 = 13— 7a?. x — \\.

2. l^l— l — 2x— Sl, a? = 9.

3. 121 + 3a?— 6— -^z^^— of. a: =1391.

82; 7a: 3a: 7 a:

^- ^ + 10 +X--8"""-^^- ^=^^1-

16 3
5. — -0?=: — 107 + 4121 — -0?- 3161. x:=- — 80||.

2 z — 5 19 — X _ 10 1 — 7

1^ ^ ir~ "~ y

^ ,
19 + 2a: ,^ 7a: + ll

7. 4 a? ^J^^— = 15 -f— . 0? = 3.

^- -r^- + -"3-^—9
2'

^==^-

6 X -f-_8 5a: + 3 __ 27 — 4 a; 3 a: + 9 _

3 a:— 13 12 + 7 a:

9. 4a? + A ^^
y—

_^ 9 + 5a: 11a:— 17= 7a?— 33 ^— g . a?zz:15.

10. 3-25a?— 5-007— 0? = 0.2— 0.34 a?. a? = 2*0 10424.

11 oc~aA--A-'^-^
{ad + hc)e

11. a?-«+ ^+ ^^ . 0?- ^^_^j .

12 ^J-£_^-L^_p.-A ^- {h +g)hdf

13. ~ — 1 U3a6 = 0. 0? = ^^ r—^.a c c— ad

14. ^_dc = 6^_ac. x = '^\-'l}^-''\b— c .a^ — h^ j^l)c
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a:) «(m-
x c-

-/; , m(«— x) aim— 3c4-3a)
16. cz=ia A ^——^. X = -^^ -^- ^.

6 a-\-x c— a-j- m

17.

18.

«a; c? c

ca:'^ _ /x^ _ cd-^af_af—cd

.^ 3a— 5a; , 2«— a: a 4- f 7
19. -.— = —i-^ — dx

a— c a a— c

a -i- b X d-\-ex' bf— ce ce —bf
-5x 2a— X a -|-jf

—c' d a— c

_ d{f^2a)—2a{a^ c)
"~ {a-^c){d^— l)— 5d

'

20. {a + x){b + x)—a{b+c)=z^ + xK a:=^.

Of Questions having two Unknown Quantities, and of JVegaiive

Quantities,

55. The questions, which we have hitherto considered, involve

only one unknown quantity, by means of which, with the known

quantities, are expressed all the conditions of the question. It is

often more convenient, in some questions, to employ two unknown

quantities ; but then there must be, either expressed or implied, two

conditions, in order to form two equations, wilhout which the two

unknown quantities cannot be determined at the same time.

The question in art. 3., especially as it is enunciated in art. 4.,

presents itself naturally with two unknown quantities, that is, with

both the numbers sought. Indeed, if we denote

the least by x,

the greatest by y,

their sum by a,

their difference by 6,

we have, by the enunciation of the question,

x + y=:a,

y— a? = &.

Each of these two equations being considered by itself, we can

determine one of the unknown quantities. If we take the second,

for exanople, we deduce the value of y, which is

y=lJ^x,
a value, which seems at first to teach us nothing with regard to

what we are seeking, since it coitlains the quantity a?, which is
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not given ; but if, instead of the unknown quantity y in the first

equation, we put this, its equivalent ; the equation, containing now

only one unknown quantity x^ will give the value of x by the pro-

cess already taught.

We have in fact bv this substitution,

X -{- b -^^ X =: a,

or 2 X -{- b =z a,

, , a— b
or lastly, x =. —^—

;

and putting this value of x in the expression for y,

a--b a -\-by~b -\-x:=zb-\ ^— =1—^—

;

we have then for the two unknown numbers the same expressions

as in art. 3.

It is easy to see indeed, that the above solution does not differ

essentially from that of art. 3. ; only I have supposed and resolved

the second equation y— a; r= 6, which 1 contented myself with

enunciating in common language in the article cited ; and from it

I deduced, without algebraic calculation, that the greater number

was X -{- b.

56. I take another question.

A laborer having ivorIced for a person 12 days, and having

with him, during the first 7 days, his luife and son, received 74

francs ; he ivorked aftenvaj'd tvith the same person 8 days more^

during 5 of ivhich, he had with him his ivife and son, and he re-

ceived at this time 50 francs ; how much did he earn per day him^

self, and hoiv much did his wife and son earn ?

Let X be the daily wages of the man,

y that of his wife and son ;

12 days' work of the man will amount to \2 x,

7 days' work of his wife and son, 7 y ^

we have then by the first statement of the question,

12^ + 7y=:74;
8 days' work of the man will give 8 x,

and 5 days' work of his wife and son 5 y ;>

we have then by the second statement

8 a; + 5y = 50.

Proceeding as in the preceding question, we take the value of

y in the first equation, which is

Jllg. 9
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74— 12 »y-'
7

and substitute this value in the second, multiplying it by 5, the co-

efficient, and it becomes
370— 60 X ^^Sx -] ^ = 50,

an equation, which contains only the unknown quantity x. By re-

ducing it we have

56 a? + 370— 60 a? = 350,

370— 4a^zi=350;

transposing — 4 a? to the second member, and 350 to the first, we

obtain

370— 350 = 4 a?

20 = 4 a?

5 = a?.

Knowing a?, which we have just found equal to 5, if we place

this value in the formula

74— r2a:y= —-^—

,

the second member will be determined, for we have

~ '^4— 1^ X 5 _ 74—60 _ 14 _
y — ;^

— - ^ — -y- — ^
;

thus y = 2.

The man then earned 5 francs per day, while his wife and son

earned only 2.

57. The reader has perhaps observed, that in resolving the

above equation 370— 4 a? =: 350, I have transposed 4 a? to the

second member. I have proceeded thus to avoid a slight diffi-

culty, that would otherwise have occurred, and which I will now

explain.

By leaving 4 a? in the first member, and transposing 370 to the

second, we have

— 4 a? =350— 370;

and reducing the second according to the rule in art. 19., there

will result from it

— 4 a? = — 20.

But as we have avoided, in the preceding article, the sign —

,

which affects the quantity 4 a?, by transposing this quantity to the

other member ; and as in like manner the quantity 350— 370 be-

comes by transposition 370— 350 ; and since a quantity, by being
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thus transferred from one member to the other, changes the sign

(10), it is evident that we may come to the same result by simply

changing the sign of each of the quantities — 4 a?, -f- 350— 370,

which gives

4 a? = —350+ 370,

or 4x=: 370—350,
which is the same as

370— 350 = 4.x.

We might also change the signs after reduction, and the equa-

tion

— 4 a: = — 20

becomes, as above,

4a?zz=20.

It follows from this, that we may transpose indifferently, to one

member or to the other, all the terms involving the unknown quan-

tity, observing merely to change the signs of the two members in

the result, ivhen the unknown quantity has the sign —

.

58. Having undertaken, by means of letters, a general solution

of the problem of art. 56., I will now examine a particular case.

I suppose the first sum received by the laborer to be 46 francs,

and the second 30, the other circumstances remaining as before
;

the equations of the question will then be

12 x + 7 y =46,
5 X + 5 y zzi 30.

The first gives

46— 12 a;

y =
^

:

multiplying this value by 5, in order to substitute it in the place of

5y, in the second, we have

g^_^ 230-60.^3^.

the denominator being made to disappear, it becomes

56 a? +230— 60 0? = 210,

or 56 a?— 60a? = 210 —230,
or — 4 0? = — 20,

and the signs being changed agreeably to what has just been re-

marked,

4 0? = 20,

X = V = 5.

If we substitute this value instead of a? in the expression for y, it

will become
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46— 60
y= —7—

»

— 14
or 2/ = —^.
Now how are we to interpret the sign —, which affects the in-

sulated quantity 14? We understand its import, when there are

two quantities separated from each other by the sign —, and

when the quantity to be subtracted is less than that from which

it is to be taken ; but how can we subtract a quantity when it is

not connected with another in the member where it is found ?

To clear up this difficulty, it is best to go back to the equations,

which express the conditions of the question ; for the nearer we

approach to the enunciation, the closer shall we bring together

the circumstances vyhich have given rise to the present uncer-

tainty.

I resume the equation

120^ + 7i/=i46;

I put in the place of x its value 5, and it becomes

60 + 7 7j — 46.

This equation, by mere inspection, presents an absurdity. It is

impossible to make the number 46 by adding any thing to the

number 60, which exceeds it already.

I take also the second equation,

8 0)+ by = 30,

^nd putting 5 in the place of x, I find

40 + 5 2/ z= 30

;

the same absurdity as before, since the number 30 is to be formed

ty adding something to the number 40.

Now the quantities 12^ or 60 in the first equation, Sx or 40
in the second, represent what the laborer earned by his own
work ; the quantities 7 y and 5 y stand for the earnings of his wife

and son, while the numbers 46 and 30 express the sum given as

the common wages of the three ; we must see then at once in

what consists the absurdity.

According to the question, the laborer earned more by himself,

than he did by the assistance of his wife and son ; it is impossible

then to consider what is allowed to the woman and son, as aug-

menting the pay of the laborer.

But if, instead of counting the allowance made to the two latter

persons as positive, we regard it as a charge placed to the account
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of the laborer, then it would be necessary to deduct it from his

wages ; and the equations would no longer involve a contradiction,

as they would become

60— 7 2/ =4G,
40— 51/1=30;

we deduce from the one as w^ell as from the other

2/ = 2;

and we conclude from it, that if the laborer earned 5 francs per

day, his wife and son were the occasion of an expense of 2 francs,

which may otherwise be proved thus.

For 12 days' labor he received

5 X 12 or GO francs;

the expense of his wife and son for 7 days is

2 X 7 or 14 francs
;

there remain then 46 francs.

For 8 days' labor he receives

5 X 8 or 40 francs
;

the expense of his wife and son for 5 days is

2 X 5 or 10 francs

;

there remain 30 francs.

It is very clear then, that in order to render the proposed prob-

blem with the first conditions possible, instead of the enunciation

in article b^..j we must substitute this

;

Jl laborer worked for a jjerson 12 days^ having had with him

the first 7 days, his wife and son at a certain expense, and he re-

ceived 46 francs ; he worked afterwards 8 days, during 5 of which

he had with him his ivife and son at an expense as before, and he

received 30 francs. It is required to find hoiv much he earned per

day, and what was the sum charged him per day on account of his

wife and son.

Calling X the daily wages of the laborer, and y the daily

expense of wife and son, the equations of the problem will evi-

dently be

12^^_7?/=i46

8 a?— 5?/ = 30;

and being resolved after the manner of those in art. 56., they

will give

J? z== 5 francs, y = 2 francs.

59. In every case, where we find, for the value of the unknown

quantity, a number affected with the sign —, we can rectify the
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enunciation in a manner analogous to the preceding, by exam-

ining, with care, what that quantity is, among those which are

additive in the first equation, which ought to be subtractive in

the second ; hut algebra supersedes the use of every inquiry of

this kind, when we have learnt to make a proper use of expres-

sions affected with the sign — ; for these expressions, being

deduced from the equations of the problem, must satisfy those

equations ; that is to say, by subjecting them to the operations

indicated in the equation, we ought to find for the first member

a value equal to that of the second. Thus the expression —=

—

drawn from the equations

12 ic + 7 y z=z 46,

8 0? + 5 2/ = 30,

must, consistently with the value of a? =: 5, as deduced from these

same equations, verify them both.

The substitution of the value of x gives, in the first place,

60 + 7 2/ = 46,

40 + 5 y =: 30.

14 ,

It remains to make the substitution of—y~ ^"^ ^^^^ place of y ;

and for this purpose we must multiply by 7 and by 5, having

regard to <the sign —, with which the numerator of the fraction is

affected.

If we apply the rule relative to the signs given in art. 42. for

division, we have

besides, by the rule for the signs in multiplication, we find

7 X —2= — 14,

5 X —2= — 10.

Hence the equations

60 + 7 2/ = 46, and 40 + 5 y = 30,

become respectively

60— 14 = 46, and 40—10=^30,
and are Verified, not by adding the two parts of the first member,

but in reality by subtracting the second from the first, as was done

above, after considering the proper import of the equations.

60. The problem in art. 58. does not admit of a solution in

the sense in which it is first enunciated ; that is to say, by addi-

tion, or regarding as an accession the sum considered with
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reference to the wife and son of the laborer ; neither does the

second enunciation consist with the data of the problem in art.

56.

If we were to consider in this case y, as expressing a deduction,

the equations thus obtained

I2x — 7y=74,
8x— 5y=:50,

would give

. = 5, and y = --Zl^;

and the substitution of the value of x would immediately change

the equations to

60— 7?/ = 74,

40— 5i/ = 50.

The absurdity of these results is precisely contrary to that of

the results in art. 58., since it relates to remainders greater than

the numbers 60 and 40, from which the quantities 7 y and 5y are

to be subtracted.

The sign minus, which belongs to the expression of y, implies

an absurdity ; but this is not all, it does it away also ; for, accord-

ing to the rule for the signs,

and _7X— 2=: + 14,

— 5 X— 2=: + 10.

Thus the equations

60—7^1=74, 40— 5 2/=: 50,

become

60 + 14 = 74, 40 + 10 == 50,

and are verified by addition ; consequently, the quantities — 7 y
and — 5y, transformed into + 14, -[- 10, instead of expressing

expenses incurred by the laborer, are regarded as a real gain.

We are brought back then in this case, also to the true enunciation

of the question.

61. We perceive by the preceding examples, that there may be,

in the enunciations of a problem of the first degree, certain contra-

dictions, ivhich algebra not only makes known, but points out also

how they may be reconciled, by rendering subtractive certain quan-

tities which had been regarded as additive, or additive certain

quantities which had been regarded as subtractive, or by giving to

the unknown quantities values affected with the sign—

.
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See then what is to be understood, when we speak of values

affected by the sign — , and of what are called negative solutions,

resolving, in a sense opposite to the enunciation, the question in

which they occur.

It follows from this, that we may regard, as but one single ques-

tion, those, the enunciations of which are connected together in

such a manner, that the solutions, which satisfy one of the enun-

ciations, will, by a mere change of sign, satisfy the other also.

62. Since negative quantities resolve in a certain sense the

problems, which give rise to them, it is proper to inquire a little

more particularly into the use of these quantities, and to settle

once for all the manner of performing operations in which they are

concerned.

We have already made use of the rule for the signs, which had

been previously determined for each of the fundamental opera-

tions 'y but the rules have not been demonstrated with reference

to insulated quantities. In the case of subtraction, for example,

we supposed that there was to be taken from a, the expression

J— c, in which the negative quantity c was preceded by a posi-

tive quantity b. Strictly speaking, the reasoning does not de-

pend upon the value of Z> ; it would still apply when b =i 0, which

reduces the expression b— c to — c. But the theory of nega-

tive quantities being at the same time one of the most important

and most difficult in algebra, it should be established upon a sure

basis. To effect this, it is necessary to go back to the origin of

negative quantities.

The greatest subtraction, that can be made from a quantity, is

to take away the quantity itself, and in this case we have zero

for a remainder ; thus a— a — 0. But when the quantity to be

subtracted exceeds that from which it is to be taken, we cannot

subtract it entirely ; we can only make a reduction of the quantity

to be subtracted, equal to the quantity from which it was to be

taken. When, for example, it is required to subtract 5 from 3,

or when we have the quantity 3— 5 ; to take, in the first place, 3

from 5, we decompose 5 into two parts 3 and 2, the successive

subtraction of which will amount to that of 5, and thus, instead

q{ 3— 5j ^ve have the equivalent expression 3— 3— 2, which is

reduced to — 2. The sign —, which precedes 2, shows what is

necessary to complete the subtraction ; so that, if we had added

2 to the first of the quantities, we should have had 3 + ^— ^j or
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zero. We express then, with the help of algebraic signs, the idea

that is to be attached to a negative quantity — a, by forming

the equation a— a=:0, or by regarding the symbols a— a,

b— h, &;c.5 as equivalent to zero.

This being supposed, it will be understood, that if we add to

any quantity whatever the symbol b — b, which in reality is only

zero, we do not change the value of this quantity, and that, con-

sequently, the expression a -\-b— b, is nothing else but a different

manner of writing the quantity a, which is also evident from the

consideration, that -f- b and — b destroy each other.

But having by this change of form introduced -[- b and — b in-

to the same expression with a, we see, that in order to subtract

any one of these quantities, it is sufficient to efface it. If it were

-f- b that we would subtract, we efface it, and there remains a— b,

which accords with the rule laid down in art. 2. ; if on the other

hand it were — 6, we efface this quantity, and there would remain

a + 6, as might be inferred from art. 20.

With respect to multiplication, it will be observed, that the pro-

duct of a— a by +6 must be ab— ab, because the multipli-

cand being equal to zero, the product must be zero ; and the first

term being a &, the second must necessarily be — ab to destroy

the first.

We infer from this, that — a, multiplied by -j- 6, must give

— a b.

By multiplying a by i— b, we have still ab -^-ab, because the

muhiplier being equal to zero, the product will also be equal to

zero ; it is therefore necessary that the second term should be
— a b, to destroy the first -{- a b.

Whence + a, multiplied by— b, must give — ab.

Lastly, if we multiply — a by b— 5, the first term of the pro-

duct being, according to what has just been proved, — ab, it is

necessary that the second term should be -}- a b, ns the product

must be nothing when the multiplier is nothing.

Whence — a, multiplied by — &, gives -\- ab.

By collecting these results together we may deduce from themf

the same rules as those in art. 31.

As the sign of the quotient, combined with that of tHe divisor,

according to the rules proper for muhiplication, must produce

the sign of the dividend, we infer from what has just been said,

that the rule for the signs given in art. 42. corresponds with that,

Alg. 10
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which it is necessary to observe in fact, and that consequently^

simple quantities, when they are insulated, are combined with re-

sped to their signs, in the same manner, as when they make a part

of polynomials*

63. According to these remarks, we may ahvays, when we meet

with negative values, go back to the true enunciation of the ques-

tion resolved, by seeking in what manner these values will satisfy

the equations of the proposed problem ; this will be confirmed by

the following example, which relates to numbers of a different kind

from those of the question in art. 56.

64. Two couriers set out to meet each other at the same time

from two cities, the distance of which is given ; we know how many

miles [a) each travels per hour, and ive inquire at what point of the

route between the two cities they will meet.

To render the circumstances of the question more evident, I

have subjoined a figure, in which the points A and B represent the

places of departure of the couriers.

A R
" F

I denote the things given, and those required, in the usual way,

by small letters.

a, the distance in miles of the points of departure A and B,

h, the number of miles per hour, which the courier from A
travels,

c, the number of miles per hour, which ' the courier from JS

travels.

The letter R being placed at the point of meeting of the two

couriers, I shall call x the distance AR passed over by the first, y

the distance BR passed over by the second ; and as

AR + BR=^ AB,

I have the equation,

. X + y z=z a.

Considering that the distances x and y are passed over in the same

time, we remark that the first courier, who travels a number b of

miles in an hour, will employ in passing over the distance x, a time

X
denoted by j.

(a) In the original the distance is given in kilometres. It is here

expressed in miles to avoid perplexing the learner.
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Also the second courier, who travels c miles in an hour, will

employ, in passing over the distance y, a time denoted by - ; we

have then

The equations of the question therefore will be

^ + 2/ = «j

b'~ c

Making the denominator b of the second to disappear, we have

by
X — I

c ^

putting this value in the place of x in the first equation, it be-

comes
b y

and we deduce from it

^2/ + ^2^~^^j w^ience y =: .

Substituting this value of y in the expression for the value of x,

we obtain

b a c ab c , ^.
x=z-Xj—,—

,

or X := —
t(^1)'

or lastly

As the sign — does not enter into the values of x and y, it is

evident that whatever numbers are put for the letters a be, we shall

always find x and y with the sign +j ^^^^ therefore the question

proposed will be resolved in the precise sense of the enunciation.

Indeed it is readily perceived, that in every case where two per-

sons set off from different points and travel toward each other,

they must necessarily meet.

65. I will now suppose, that the two couriers proceed in the

same direction, and that the one who sets out from A is pursuing

the one who sets out from B, and who is travelling toward the

same point C, placed beyond B, with respect to A.

A —g— j^— ^
It is evident that in this case, the courier who starts from the

point A, cannot come up with the courier who sets off from the

point B, unless he travels faster than this last, and the point of
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coming together, R, cannot be between A and B, but must be be-

yond B, with respect to A.

Having the same things given as before, and observing that

when

AR— BR=: AB,
we have

X— y = a.

The second equation,

£ — ^
b— c'

expressing only the equality of the times employed by the cou-

riers in passing over the distances AR and BR, undergoes no

change.

The above equations, being resolved like the former ones, give

_ ^X z=z
c

5

b ac ab c
x=z- X

c ^ b--c "^ c(b—c)'

and lastly x =: j .

Here the values of x and y will not be positive, except when b

is taken greater than c, that is to say, except the courier starting

from the point A be supposed to travel faster than the other.

If, for example, we make

6 = 20, C zz: 10,

we have
20 a 20 a

y

20— 10~" 10

10 a 10 a

-f7r=2«^

; a :

20— 10
~" 10

from which it follows, that the point of their coming together is dis-

tant from the point A twice AB.
If we now suppose b sirjaller than c, and take, for example,

6 =z 10, c=: 20,

we find

_ _10
a _ lOa^ _

^ — 10— 20 ~" ^=T6 — ~ ^'

— 20

«

__ 20 a _
y — To^20 "^ — 10

^^'
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These values being affected with the sign —, make it evident,

that the question cannot be resolved in the sense in which it is

enunciated ; and indeed it is absurd to suppose that the courier

setting out from the point A, and proceeding only 10 miles in an

hour, should ever be able to overtake the courier setting out from

the point B, and travelling 20 miles per hour, and who is in ad-

vance of the first.

66. Nevertheless, these same values resolve the question in a

certain sense ; for, by substituting them in the equations

x— y=z a,

x_y

we have by the rule for the signs

— fl -[- 2 a zr: a,

a 2a~ To "~ ""
20'

equations which are satisfied ; since, by making the reductions, the

first member becomes equal to the second ; and if we attend to

the signs of the terms which compose the first, we shall see

how it is necessary to modify the enunciation of the question, in

order to do away the absurdity.

Indeed, it is the distance a corresponding to x, and passed over

by the first courier, which is in reality subtracted from the distance

2 a, corresponding to y, and passed over by the second courier ; it

is then just as if we had changed y into x, and x into y, and had

supposed that the courier starting from the point B, had run after

the other.

This change in the enunciation produces also a change in the

direction of the routes of the couriers ; they are no longer travel-

ling toward the point C, but in an opposite manner toward the

point C^, as represented in the figure below
;

C^ ' R'* A B R C"
and their coming together takes place in R\ The result from

this is

BR—AR = AB,
which gives

y—x=ia',
we have besides constantly

X _y
6
""

6:'



78 Elements of Algebra.

and we find

ab 10 a
=z a,"^^ c-^b —20—10

a c 20 a

y-'^zij'-w^io'^^^'
positive values, which resolve the question in the precise sense in

which it is enunciated.

67. The question we have been considering presents a case, in

which it is in every sense absurd. This occurs when we suppose

the two couriers to travel equally fast. It is evident, that in what-

ever direction we suppose them to move, they can never come to-

gether, since they preserve constantly the interval of their points of

departure. This absurdity, which no modification in the enuncia-

tion ca:''. remove, is very conspicuous in the equations.

We have now & = c, since the couriers, travelling equally fast,

pass over the same space in an hour ; the equation

becomes

and gives ^ = 2/-

Thus the equation x— y =2 a

reduces itself to x— a? = a or = a,

a result sufficiently absurd, since it supposes a quantity a, the mag-

nitude of which is given, to be nothing.

68. This absurdity shows itself in a manner very singular in the

values of the unknown quantities

ab ac
^ - 6"=7' ^ ~"

6 — c
f

their denominator becoming when 6 z= c, we have

a b a c

We do not easily perceive what may be the quotient of a di-

vision when the divisor is zero ; we see merely, that if we consider

b as nearly equal to c, the values of 00 and y become very great.

To be convinced of this, we need only take

6=6 miles, c = 6,8 miles

;

we then have a? = tt-^ = 30 a,

5,8 a » -.
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If further we take 6 = 6 c = 5,9.

we have

5,9 a .-

If moreover we make

& = 6, c=z 5,99,

it becomes

5,99 a .--

and it is manifest, that as the divisor diminishes in proportion to the

smallness of the assumed difference of the numbers b and c, we

obtain values more and more increased in magnitude.

But as a quantity, however minute, can never be taken for zero,

it follows, that however small we make the difference of the num-

bers represented by the letters b and c, and however great may be

the consequent values of x and y, we never attain to those which

answer to the case where b =z c.

Since these last cannot be represented by any number, however

great we suppose it, they are said to be infinite ; and every ex-

pression of the form —, the denominator of which is zero, is re-

garded as the symbol of infinity.

This example shows that mathematical infinity is a negative

idea, since we at length get it only by the impossibility of assign-

ing a quantity that can resolve the question.

We may ask here, how the values

ab ac

satisfy the equations proposed ; for it is an essential character-

istic of algebra, that the symbols of the values of unknown quan-

tities, whatever they may be, being subjected to the operations

indicated upon these quantities, shall satisfy the equations of the

problem.

By substituting them in the equations

X— y =:^a,

6"- 6'
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which answer to the case where 6 = c, we have by the first,

ab ab
-r--o- = "'

ab— ab , , ^^^or — z:za, or ab— ao = aXO,

or lastly, 0=0, since a x = 0.

The second equation gives, under the same condition,

ab ab

the two members of each equation becoming equal, the equations

are satisfied.

It remains still to explain how the notion indicated by the ex-

r

pression -j^-, removes the absurdity of the result found in art. 67*

For this purpose, let the two members of the equation

X— y=za,

be divided by x, which gives

1 _^-.2.
X X

and as the equation

x__^
b'^ h

gives 0? = y, the first becomes

1 — 1 = -, or = -.
X X

The error here consists in the quantity -, by which the second

member exceeds the first ] but this error becomes smaller and

smaller, in proportion to the assumed magnitude of x. It is then

with reason, that algebra gives for x an expression, which cannot

be represented by any number, however great, but which, as it

proceeds in the order of numbers becoming greater and greater,

points out in what manner we may reduce more and more the er-^

ror of the supposition.

69. If the couriers travelling equally fast, and in the same de-

tection, had set out from the same point, their coming together

could not be said to take place at any particular point, since

they would be together through the whole extent of their route.

It may be worth while to see how this circumstance is represented

by the values, which the unknown quantities x and y assume in

this case.
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B
A C

The points A and B being coincident, we have on this suppo-

sition a =2 0, and constantly b = c; it follows then, that

__ 0-6 _ _ ^ __ 5

In order to interpret these values, that indicate a division, in

which the dividend and divisor are each nothing, I go back to the

equations of the question. The first becoming

X— y =^ 0, gives 07 = 2/

;

and substituting this value in the second equation, which is

T =^T^ it becomes t = t*

The last equation having its two members identical, that is to

say, composed of the same terms with the same sign, is verified,

whatever value is assigned to y, and this unknown quantity can

never be determined. Besides, it is evident that the equation

j = j becomes oo = qj,

and consequently can express nothing more than the first.^ The

only result, both from the one and from the other, is, that the two

couriers are always together, since the distances x and y from the

point A are equal ; their value in other respects remains indeter-

minate. The expression ^ then, is here a symbol of an inde-

terminate quantity. I say here, for there are cases where it is

not ; but the expression has not then the same origin as the pre-

ceding.

70. To give an example, let there be

a{a^— b-)

b{a—b) •

This quantity becomes ^ in its present form, when a ^^z h', but if

we reduce it first to its most simple expression, by suppress-

ing the factor a— b, common to the numerator and denominator,

we find

* For the sake of conciseness, analysts apply to the same equations

the epithet, identical.

Y =1^ is an identical equation, 5— 32:z=:5— 3x is another,
6

and when two equations express only the same thing, we say that

these equations also are identical.

Alg. 1

1
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a(a + 6)

I
'

which gives 2 a, when a =:b.

It is not the same with the values of x and y, found in the pre-

ceding article, for they are not susceptible of being reduced to a

more simple expression.

It follows, from what I have just said, that when we meet

with an expression which becomes ^, it is proper, before pro-

nouncing upon its value, to see if the numerator and denominator

have not a common factor, which becoming nothing, renders the

two terms at the same time equal to zero, and which being sup-

pressed, the true value of the proposed expression is obtained.

There are, notwithstanding, some cases which elude this method,

but the limits of this work will only allow me to note the analyti-

cal fact. It belongs properly to the differential calculus, to give

the general processes for finding the true value of quantities, which

become |.

71. It is very evident, from what has been said, that algebraic

solutions either answer perfectly to the conditions of a problem, when

it is possible, or they indicate a modijicaiion to be made in the enun-

ciation, when the things given imply contradictions that cannot be

reconciled; or lastly, they make known an absolute impossibility,

when there is no method of resolving with the same things given, a

question analogous in a particular sense to the one proposed,

72. It may be remarked, that in the different solutions of the

preceding question, the changing of the signs of the unknown

quantities x and y, corresponds to a change in the direction of the

journeys represented by the unknown quantities. When the un-

known quantity y was counted from B towards A, it had in the

equation

x + y=za,

the sign -{-, and it takes the sign — for the second case, when the

motion is in the opposite direction from B towards C, art. G5.,

since we had for the first equation

X— y =^ a.

By changing the sign in the second equation,

b-^ c'

we have
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a result which differs from that given in the article cited ; but it

should be observed, that the journey y, being made up of multi-

ples of the space c passed over in an hour by the courier from B,

and this space having the same direction as the space y, ought to

be supposed to have the same sign, and consequently to take the

sign —, when — is applied to y ; we have accordingly,

_ — . -^ or — — —

-

6 — — c' he
A simple change of sign then is sufficient to comprehend the

second case of the question in the first, and it is thus that algebra

gives at the same time the solution of several analogous questions.

We have a striking example of this in the problem of art. 15,

It is here supposed that the father owed the son a sura d ; if

we would resolve the question on the contrary hypothesis, that

is, by supposing that the son owed the father the sum c?, it would

be sufficient to change the sign of cZ, in the value of x, and we

have

h c— d

If we suppose neither to owe the other any thing, we must make

d =z 0, and then the equation would be

_ be

^-^a+b'
Nothing can be easier than to verify the two solutions, by putting

anew the problem into an equation for each of the cases, which we

have enunciated.

73. It was only to preserve an analogy between the problems

56 and 64, that I have employed two unknown quantities in the

second. Each may be resolved with only one unknown quanti-

ty 'j for when we say that the laborer received 74 francs for 12

days' work performed by himself and 7 days' work by his wife

and son, it follows, that if we call y the daily wages of the woman

and son, and take 7y from 74 francs, there will remain 74— 7y
for the 12 days' labor of the man ; from which we infer that he

earned -^—- per day.

By a similar calculation for the 8 days' service, we find that he

he earned ^

—

- per day.

Putting the two quantities equal to each other, we form the

equation
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12 "" 8 •

Also in the question of art. 64.,

A R J3

if X represent the course AR of the courier from A, BR =: a— x

would be that of the courier who set off from B towards A. These

two distances being passed over in the same time by the couriers,

whose rate of travelling per hour in^ miles is denoted by numbers

b and c respectively, we have

whence

ex =L ab— b Xj

a b
X zn J— .

The difference between the solutions, which I have now given,

and those of articles ^(S. and G4., consists merely in this, that we

have formed and resolved the first equation by the assistance of

ordinary language, without employing algebraic characters, and it

is manifest, that the further we carry this, the less will remain to be

effected by the other.

74. We sometimes add to the problem of art. 64. a circum-

stance, which does not render it more difficult.

A R C B
We suppose that the coui'ier, ivho starts frorn B, sets off a number

d of hours before the other, who goes from A.

It is evident, that this amounts only to a change of the point of

departure of the first ; for if he travelled a number c of miles per

hour, he would pass over the space i?C = c 6? in 6? hours, and

would be at the point C, when the other courier set off from A
;

so that the interval of the points of departure would be

AC=zAB— BC=za— cd.

By writing then a— c d m the place of a in the equation of the

preceding article, we have

% a— c d— X

6
~"

c
'

a b— bed
X = —J—. .

b-j- c

If the couriers proceeded in the same direction, the interval of



Equations with Two Unknown Quantities. 85

A B ~C R
the points of departure would be

ACz=: AB + BC=:a + cd;

and the distance passed over by the courier from the point A
would be AR, while that passed over by the other courier would

be CR = AR— AC;
we have then

whence

X X— a— c d

b
-'

c
'

ab-j-h c d
^-^ b-^c

•

75. Enunciated in this manner, the problem presents a case, in

which the interpretation of the negative value found for x is attend-

ed with some difficulty ; it is when the couriers being supposed to

proceed in opposite directions, we give to the number d a value

such, that the space BC represented by cd, becomes greater than

a, which represents AB.

C' R A B
Now the courier from the point B arrives at C on the other side

of A at the moment when the courier from A sets off towards B
;

there is then an absurdity in supposing that the two couriers can

thus come together.

If we should take, for example,

a =z 400'"^^-, b =z 12'"i^-,
c =: 8™J«-, d =z 60^-,

there would result from h c d :=. 480 "^i^. . thus the point C would

be BO""^^- on the other side of A, with respect to the point 6; but

we find,

_ 400' 12— 6 '8-12 _ 400-3— 60 • 2 • 12
^ —

"

8+12-
—

2+3
_^ 1200— 1440 __ 240 _ _

Thus the coming together of the couriers takes place in a point

R, 48"^^^- on the other side of the point A, but between A and C
;

although it seems that the courier from B, being supposed to

continue his journey beyond the point C, can be overtaken by the

other courier only after he has passed this point.

To understand the question resolved in this sense, we may
substitute in the place of x the negative member — m, and the
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equation becomes

m a— c d -\-m
~6-"

c
~'

or by changing the signs in the two members,

m c d— a— m

We see that the distance passed over by the courier from the

C * *R *
* *A~ B

point jB, hcd— a— m, or what remains of BC after AB and

AR are subtracted, that is CR, and that AC =cd— a. This

is just what would take place if the second courier had started

immediately from the point C, where he is, at the departure of

the first ; but as they travel in opposite directions, they must

necessarily meet between A and C. Thus, this case is similar

to the first of those of art. 74., where it is sufficient to change

a— cd'mXocd— a, in order to obtain the value, which ??2 has

according to the above equation.'^

76. The problem of art. 56., taken in its most enlarged sense,

may be enunciated as follows
;

A laborer having passed a number a of days in a family, and

having with him his wife and son during a number b of days, re-

ceived a sum c ; he lived afterward in the same family a number d

of days ; he had with him this time his wife and son, during a

number e of days, and he received a sum f ; we inquire what he

earned per day, and what was allowed per day to his wfe and son.

Let X represent constantly the daily wages of the laborer,

and y that of his wife and son ; for the number a of days, he has

a X, and for the number b of days, his wife and son have b y, so

that,

ax -\- b y =:c;

for the number d of days, he has d x, and for the number e of

days, his wife and son have e y, thus,

dx+ey =f
These are the general equations of the question.

We deduce from the first

c— b 1/

X = :

a

multiplying this value by d, in order to substitute it in the place of

* See note at the end of Elements of Algebra.
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X in the second equation, we have

, c d— b di/

a

and consequently,

cd— h dy
, J.

By making the denominator to disappear, we obtain

cd— b d y -\- a e y =L af,

whence aey— hdy=zaf— c d,

af— c d
" a e— b d*

Having the value of y, if we substitute it instead of y in the ex-

pression for X, this last will be known,

, a f— c d
C h-^ y-j

a e — o a
X zzz .

a

To simplify this expression, we should, in the first place, perform

the multiphcation indicated upon the quantities

h, and "-^~;j
, (51)

a e — od ^ ^

which gives

ab f— bed
a e— b d

"^
a '

and then reduce c to a fraction having the same denominator as the

fraction which accompanies it, and perform the subtraction of this

fraction (53) ; and it becomes

ace— bed— abf-\-bcd
ae— b d

X =z

or by being reduced

ace— abf
a e — b d ^

* There might be some doubt as to the meaning of this expres-

sion ; but it is obviated by attending to the bar denoting division,

which is placed in the middle of the line. Thus, in the expression

x zz: — , J. represents the dividend, whether integral or fractional, and

B the divisor, which may also be a whole number or a fraction. So also
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Dividing by a (51) we have

ace— cibf

a^ e— ab (T

Suppressing the factor a, common to the numerator and denomina-

tor (38), we find

c e— b f
ae— b d*

The values

ce— bf af— cd

ae— bd^ " a e — b d^

are applied in the same manner as those, which we before found

for literal equations, with only one unknown quantity ; we sub-

stitute in the place of the letters, the particular numbers in the ex-

ample selected.

We shall obtain the results in art. 56., by making

a = 12, & = 7, c=i 74,

dzzi 8, cz=5, /=:50,
and those of art. 58., by making

a = 12, 5 = 7, c:z^ 46,

d:z:z 8, e = 5, /=30.
77. The values of x and y are adapted not only to the pro-

posed question ; they extend also to all those, which lead to two

equations of the first degree with two unknown quantities, since it

is evident, that these equations are necessarily comprehended in

the formulas,

A
C . .

the expression ^= ^ signifies, that x is equal to the quotient of the

A A
fraction ~ divided by B, and the expression x =:— indicates for x the

O JLJ

C
TO

quotient arising from A divided by the fraction -^ ; and lastly, we de-

A
C

note by the expression x z=z -^, the quotient resulting from the divis-

D
A JS

ion of the fraction — by the fraction —

.

It will be perceived by these remarks, that it is necessary to place

the bars according to the result, which we propose to express.
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a X -{-by^ c,

doc-\-ey=f,

provided the letters a, &, c/, e, denote the whole of the given quan-

tities, by which the unknown quantities x and y are respectively

multiplied, and the letters c and/, the whole of the known terms,

transposed to the second member.

Of the resolution of any given number of Equations of the First

Degree, containing an equal number of Unknown (Quantities,

78. When a question has as many distinct conditions, as it contains

unknown quantities, each of these conditions furnishes an equation,

in which it often happens, that the unknown quantities are involved

with odiers, as we have seen already in the problems with two

unknown quantities ; but if these unknown quantities are only

of the first degree, according to the method adopted in the

preceding articles, ive take in one of the equations the value of

one of the unknown quantities, as if all the rest were known,

and substitute this value in all the other equations, which will then

contain only the other unknown quantities.

This operation, by which we exterminate one of the unknown

quantities, is called elimination. In this way, if we have three

equations with three unknown quantities, we deduce from them

two equations with only two unknown quantities, which are to be

treated as above; and having obtained the values of the two last

unknown quantities, we substitute them in the expression for the

value of the first unknown quantity.

If we have four equations with four unknown quantities, we

deduce from them, in the first place, three equations with three

unknown quantities, which are to be treated in the manner just

described ; having found the value of the three unknown quanti-

ties, we substitute them in the expression for the value of the first,

and so on.

See an example of a question, which contains three unknown

quantities and three equations.

79. A person buys separately three loads of grain ; the first,

which contained 30 measures ef rye, 20 of barley, and 10 ofwheat,

cost 230 francs ;

The second, which contained 1 5 measures of rye, 6 of barley,

and 12 of wheat, cost 138 francs ;

Jllg. 12
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The third, which contained 10 measures of rye, 5 of barley, and

4 of wheat, cost 75 francs ;

It is asked, ivhat the rye, barley and wheat cost, each per measure ?

Let X be the price of a measure of rye,

y, that of a measure of barley,

z, that of a measure of wheat.

To fulfil the first condition, we observe, that

30 measures of rye are worth 30 x,

20 measures of barley are worth 20 y,

10 measures of wheat are worth 10^:;

and as the whole must make 230 francs, we have the equation

30 a? + 20 1/ + 10;^zz:230.

For the second condition, we have

15 measures of rye, w^orth 15 a?,

6 barley 6 y,

12 wheat 12 ;2r,

and consequently,

lbx + (Sy+ 12^= 138.

For the third condition, we have

10 measures of rye worth \0 x,

5 barley 5 y,

4 wheat 4 z,

and consequently,

lOx+by + Az = 75.

The proposed question then will be brought into three equations

;

30 a? + 20?/+ 10<:^=:230,

J5a?+ ^y-^-l^z— 138,

10a?+ by-\- 4z=z 75.

Before proceeding to the resolution, I examine the equations,

to see if it is not possible to simplify them by dividing the two

members of some one of them by the same number (12), and I

find that the two members of the first may be divided by 10, and

those of the second by 3. Having performed these divisions, I

have only to occupy myself with the equations

Sx + 2y + z=:23,

dx + 2y + 4z = 46,

I0x+ 5y + 4zz=75.

As I can select any one of the unknown quantities in order to

deduce its value, I take that of z in the first equation, because this

unknown quantity having no coefficient, its value will be entire or

without a divisor, as follows
;
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2r— 23— 3a?— 2y.

This value being substituted for z In the second and third equa-

tions, they become

5 a; _|- 2 7/ + 92— 12 cT— 8 y = 46,

10a? + 5i/ + 92— 12 a:— 8y=:75;
and reducing the first member of each, we find

92 — 7 0?— 6 2/ = 46,

92— 2 a?— 3 2/ =75.
To proceed with these equations, which contain only two un-

known quantities, I take in the first the value of the unknown

quantity y, and I obtain

92— 46— 7x 46— 7 2:

2/- 6 ' ^' 2^ = —-6—
and by substituting this value In the second equation, it becomes

92— 2 0?- 3 x^^-=^ = 75.

The denominator, 6, may be made to disappear by the usual

method, but observing that the denominator is divisible by 3, I can

simplify the fraction by multiplying it by 3, agreeably to article 54.

of Arithmetic. I have then

^_ _ 46— 1% ^^
92— 2 a? ^ =75.

The denominator 2 being made to disappear, it becomes

184— 4 a?— 46 + 70?= 150;

the first member being reduced, gives

138+ 3 a? = 150,

whence

150—138 12
X = ^ = -^, or a? = 4.

Substituting this value in the expression for that of y, I find

46—7x4 46— 28 18
2/
=

^
==—6--=^

-6' ^^ 2^==^5

and by substituting these values in the expression for that of z^ we

obtain

0? = 23—3x4— 2X3 = 23— 12— 6, or 2:= 5.

It appears then, that the price of the rye per measure was 4 fr.,

that of the barley 3,

that of the wheat 5.

This example, while it illustrates the method given in the pre-

ceding article, ought to be attended to, on account of the abbrevi-

ations of calculation, which are performed in it.
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80. I proceed now to resolve the following problem.

A man who undertook to transport some porcelain vases of three

different sizes^ contracted that he would pay as muchfor each vessel

that he broke, as he received for those which he delivered safe.

He had committed to him two small vases, four of a middle size,

and nine large ones ; he broke the middle sized ones, delivered all

the others safe, and received the sum of 28 francs.

There were afterwards committed to him seven small vases, three

of the middle size and five large ones; he rendered this time the

small and the middle sized ones, but broke the five large ones, and

he received only three francs.

Lastly, he took charge of nine small vases, ten middle sized ones,

and eleven large ones ; all these last he broke, and received in con-

sequence only A francs.

It is asked what was paid himfor carrying a vase of each size ?

Let X be the sum paid for carrying a small vase,

y, that for carrying a middle sized one,

z, that for carrying a large one.

It is evident, that each sum which the porter received, is the

difference between what was due to him for the vessels delivered

safe, and what he had to pay for those which were broken ; ac-

cordingly, the three conditions of the problem furnish respectively

the following equations

;

2x— 4y+ 9z=:2S,
>7x+ Sy— 5z=: 3,

ga)+ lOy— liz= 4.

The first of these equations gives

_ 28+4y-~ 9z

and by substituting this value, the second and third equations

become

196+ 283/— 63 2j
, ^ -

-^—-^ +10^—11^ = 4.

Making the denominators to disappear, we have

196 + 28y— 63z+ 6y— 10z=z6,

2d2 + S6y— Slz + 20y— 22z=:8;
reducing the first member of each, we obtain
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196 + 34y— 7Sz = 6,

252 + 56y— 103^ = 8;

taking the value of y in the first of tliese equations, we find

73 2— 190

y ^—34—
By means of this value, the second equation becomes

252 + 56 X^^^ — 103z=z8;

being cleared of the denominator 34, it is changed into

34 X 252 + 56 X 73<^— 56 X 190— 34 X 103 2^=34 X 8,

or into

8568 + 4088 z— 10640— 3502 z = 272.

The reduction of the first member of this result, gives

5862;— 2072=^272,

whence we deduce

2344
^=586-' ^' ^ = ^-

By going back with the value of z to that of y, we have

73 X 4— 190 292— 190 102 ^y= 34
=—T4— ==34-' ^^ 2/=3;

and with these two values, we find

28 + 4x3— 9x4 28+12—36 4 _0^=-^
-3

=—t-^ z=^, or x = 2.

The prices then were 2 fr. for carrying a small vase,

3 one of a middle size,

4 a large one.

This example is sufEcient to ifehow how to proceed in all simi-

lar cases.

81. It sometimes happens, that all the unknown quanthies do

not enter at the same time into all the equations ; the method,

however, is not changed by this circumstance ; it is sufficient,

carefully to examine the connexion of the unknown quantities, in

order to pass from one to the others.

Let there be, for example, the four equations,

Su— 2y=: 2,

2x + Sy =:S9,

5 X— 7 z = 11,

4y + 2z = 4],

containing the unknown quantities, w, x^ y, and z.

With a little attention we see, that by taking the value of cc



94 Elements of Algebra,

in the second equation, and substituting it in the third, the result

containing only y and z, will, by being combined with the fourth

equation, give the values of these two quantities ; and having the

value of y, we obtain those of u and oc, by means of the first and

second equations. The following is the process
;

39—3?/

(57).

or lyD— iby— 14.

or 15?/+ 14. = 173

The1 two equations

15y+ 14.:= 173,

4y+ 3.:zzr 41,

being resolved, give

y = ^, . = 7;

and by means of these values, we have

39— 3x5 39—15 24
'— 2'

^^2+ 2y 2+10
"~ 3 ~

12
-3-, or

The numbers sought then are

4, 12, 5, and 7.

82. The method now explained is applicable to literal equa-

tions, as well as to numerical ones ; but the multitude of letters,

which it is necessary to employ to represent generally the things

given, when the number of equations and unknown quantities

exceed^ two, has led algebraists to seek for a more simple man-

ner of expressing them. I shall treat of this in the following

article ; but in order to furnish the reader with the means of

exercising himself in putting a problem into an equation, and

resolving it, I have subjoined a number of questions, and have

placed at the end of each the answer that is required.

(I.) A father, being asked the age of his son^ saidy iffrom double

the age that he is of now, you subtract triple of what he was six

years ago, you have his present age.

Answer. The child was 9 years old.

(2.) Diophantus, the author of the most ancient book on Algebra,

that has come down to us, passed a sixth part of his life in infancy,

a twelfth part of it in youth; afterward he was married and passed
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in this state a seventh part, andJive years more, when he had a son,

whom he survivedfour years, and who attained, only to half the age

of his father, what was the age of Diophantus when he died ?

Answer, 84 years.

(3.) Ji merchant drew, every year, upon the stock he had in

trade, the sum of 1000 francs for the expense of his family ; still

his property increased every year, by a third part of what remained

after this deduction, and at the end of three years it was doubled ;

how much had he at the beginning of the first year ?

Answer, 14800 francs.

(4.) A merchant has two kinds of tea, the fii'st at\A francs a

pound, the second at IS francs ; hoiu much ought he to take of each to

make up a chest of iOO pounds, which should be worth 1680 francs ?

Answer, 30 pounds of the first and 70 of the second,

(5.) j1 person filled, in 12 minutes, a vessel containing 39 gal-

lons, with water, by means of two fountains, which were made to

run in succession, and one discharged 4 gallons per minute and the

other 3, how long did each fountain run?

Answer, the first S minutes, and the second 9.

(6.) At noon the hour and minute hands of a watch are together,

at what point of the dial will they next be in conjunction ?

Answer, at 1 hour 5 minutes and y^y.

Obs. This problem refers itself to that of art. 65.

(7.) A man, meeting some beggars, wishes to give them 25 cents

each, but finds upon counting his money, that he wants 10 cents in

order to do it; he then gives them only 20 cents each, and has 25 cents

left ; how much money had he, and what was the number of beg-

gars ?

Answer, he had $1,65, and the number of the beggars was 7.

(8.) Three brothers purchased an estate for 50000 francs, and

the first wanted, in order to complete the whole payment, half of the

property of the second ; the second would have paid the entire sum

with the help of a third of what the first owned, and the third requir-

ed, to make the same payment, in addition to what he had, a fourth

part of what the first possessed ; what was the amount of eacfnne^s

property ?

Answer, the first had SOOOO francs, the second 40000, and the

third 42500.

(9.) Three players after a game count their money, one had lost,

the other two had gained each as much as he had brought to the play ;
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after the second game^ one of the players, who hadgained hefore^ lost

and the two others gained each a sum equal to what he had at the

beginning of this secondgame; at the third game, the player, who

had gained till now, lost with each of the others a sum equal to that,

which each of them possessed at the beginning of this last game ;

they then separated, each having 120 francs ; how much had they

each, when they commenced 'playing ?

Answer, he who lost at the first game, had 195 francs,

he who lost at the second 105,

he who lost at the third 60.

Generalformulasfor the resolution ofEquations ofthe First Degree.

83. To obviate the inconvenience referred to in the beginning

of the last article, v^e shall represent all the coefficients of the

same unknown quantity by the same letter, but distinguish them by

one or more accents, according to the number of equations.

General equations with two unknown quantities are written

thus
;

ax -{-b y = c,

a' X -{-b' y :=. d.

The coefficients of the unknown quantity x are both represented

by a, those of i/ by 6 ; but from the accent, which is placed over

the letters in the second equation, it may be seen, that they are

not considered as having the same value, as the corresponding ones

in the first. Thus a' is a quantity different from a, b' a quantity

different from b.

If there are three equations, they are expressed thus

;

ax-\-by-\-czz=zd,
a' X -\' h' y -\' d z :=. d'

,

a" x-^-V'y-^-d'zzzid".

All the coefficients of the unknown quantity x are designated by

the letter a, those of y by 6, those of 2f by c ; but the several let-

ters are distinguished by different accents, which show, that they

denote different quantities. Thus a, a' a", are three different

quantities. The same may be said of b, b' , b" , &lc.

Following this method, if we have four unknown quantities, and

four equations, we may write them thus
;

a X -{-b y + c z -^ d u = e,

a' X \-b' y \' d z -{• d' u z=z d,

a" x-\-b'' y + d' z + d'' u =z d\
a" ' ^ + '^"'

y + c''' z + d''' M = e'
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84. To avoid fractions, and simplify the calculation, we may
vary the process of elimination in the following manner.

Let there be the equations

a X -\- b y = c,

a' X -^ b' y z=z c',

it is evident, that if one of the unknown quantities, a?, for exam-

ple, has the same coefficient in the two equations, we have only to

subtract one of these equations from the other, in order to make

this unknown quantity disappear. This may be seen at once in the

equations

\0x + ny=.21,
lOx +92/== 15,

which give

11 y— 9 2/
=27 — 15, or 2 1/ = 12, or i/ = 6.

It is evident, that the coefficients of x may be immediately made

equal in the equations

a X '\-b y :=: c,

a' X -{-b' y :=: d,

by multiplying the two members of the first by a', the coefficient

of X in the second, and the two members of the second by a, the

coefficient of x in the first ; we thus obtain,

aa' X -\- a' by zzza' c^

a a' X -{- ab' y -=1 a c'

,

Then subtracting the first of these from the second, the unknown

quantity x disappears ; and we have

{ab'— a' b)y =1 ac'— a^ c,

an equation, w^hich contains only the unknown quantity y ; from

this we may deduce,

ac'— ca'

^ ^ ab'^Td:'*

The method we have just employed, may always be applied to

equations of the first degree, to exterminate any one of the un^

known quantities.

By exterminating, in the same manner, the unknown quantity y,

we may find the value of x.

If we apply this process to three equations, containing a?, y, and

Zj we may first exterminate x from the first and second, then from

the first and third ; we thus obtain two equations, which contain

only y and z^ from which we may exterminate y.

When this calculation is performed, the equation containing z^

Alg. 13
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to which we arrive, will have a factor common to all its terms,

and consequently will not be the most simple, which may be

obtained.

85. Bezout has given a very simple method for exterminating

at once all the unknown quantities except one, and for reducing

the question immediately to equations, which contain one un-

known quantity less than the equations proposed. Although

this process is necessary, only when equations with three un-

known quantities are employed, we shall, in order to give a com-

plete view of the subject, begin by applying it to those, which con-

tain only two.

Let there be the equations

a cc -{-b y =^ c,

a^ X -^ b^ y =1 & ',

multiplying the first by any indeterminate quantity m, we have

amx-\-bmy=i mc;

subtracting from this result the equation

a^ X -{-b^ y ^=z &j

there remains

amx— a' x-\- b my— b' y -^.cm— &,

or {am— a') x -{- (bm— b^) y = cm— &,

Since m is an indeterminate quantity, we may suppose it to be

such, that bm=^b\ In this case, the term multiphed by y disap-

pears, and we have

cm— c'

X = -t;am— a

but since b m=.b'^ it follows that,

h'

therefore

m = ^;

h ^ ch'
"^ — ah' /^ab'— ba''

If, instead of supposing bm =ib^, we make am:=. a\ the term,

which contains a?, will vanish, and we shall have

cm— d
y — b^T^v

The value of m will not be the same as before ; for we shall have

a'
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and by substituting this in the expression for y, we find

c a'

ba' -—ab''

If we change the signs of the numerator and denominator of this

value of y, the denominator will become the same, as that in the

expression for a?, since we shall have

a c'— ca'

y ""
ab'— ba''

S^. Next let there be the three equations

a X -\-b y -{- c z 1= df

a' X -{-h' y -^ d z ^=L d'^

a'' x-\^h" y + c'' zz=z d''
;

we shall be led, by an obvious analogy, to multiply the first of

these equations by w, and the second by n, m and n being inde-

terminate quantities, to add together the results, and from the

sum to subtract the third ; by this means, all the equations will be

employed at the same time, and the two new quantities m and w,

which we may dispose of as we please, will admit of any deter-

minate value, which may be necessary to make both the unknown

quantities disappear in the result. Having proceeded in this man-

ner, and united the terms by which the same unknown quantity is

multiplied, we shall have

(am -^ a^ 71— a^^) a? -j- {bm -^h' n— 6'^) y -\- [cm -{' c' n— c'^)z

z=zdm + d' n—d^'.

If we would make the unknown quantities x and y disappear,

we must take the equations

a m -f- a^ w r= a"^

bm + b'n = h''.

and then we obtain

_ dm + d> n — d"

cm-{- c' n— c"

From the two equations, in which m and n are the unknown

quantities, it is easy to deduce the value of these quantities, by

means of the results obtained in the preceding article ; for it is

only necessary to change in these results x into m, y into n, and to

write instead of the letters

which gives
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a" b' — h" a'
mi

n =z

a b' -—b a'
'

a b"'-b a''

a b' — r^'
Substituting these values in the expression for z, and reducing all

the terms to the same denominator, we have,!

_ d jb' a"— a' b") + d' {a b" -- b a") — d" {ab'— b a')

^ ^ c(b' a" — a' b") \- c' {a b" ^ba")-— c" {ab'—b a')'

If we had made the terms containing x and z to disappear, we

should have had y ; the letters m and n would have depended

upon the equations

a 771 + a' 71 =: a^^, cm -{- & n =i: c"
^

and proceeding as before, we should have found

^ d {c' a" — a' c") + d' (a c" — c a") --d" (a c' --ca')

y ^ b {d a" — a' c") + b' {a c"— c a") — b" {ad— c a')'

Lastly, by assuming the equations

hm-\- y n=i h"^ cm -\- & n=i d'^

ive make the terms multiplied by y and z to disappear ; and we

have

__ d {d b" -- b' d') + d' {b d' — c b")— d"{ b d -— cb')

^ — a {d b"— b' d')+ a> (6 d' — c b")— a" {bd-^c b'Y

These values being developed in such a manner, as to make the

terms alternately positive and negative, if we change, at the same

time, the signs of the numerator and denominator, in the first and

third, we shall give them the following forms
;

_ab'

d

" -—ad' b" + da'b" '--ba' d" -{-bd' a"— db' a"

^ "~
ab> d> -^adb"-\-c a^b'^-^-ba' d' -{-bd a"— cb' of''

^ad'd'— a d d" -{-ca' d" -^da* d>+ dd a"— cd' a"

y ^ ab' d'— adb" -\-ca>b" -^ba' d' -\-b d a"— c b' a'"

^ db' d'—-dd b" Ĵ cd'b"— bd' d' -^-b d d"— cb d"
^ ~ ab' d'-^-ad b" + ca' b"-^ba' d' + 6 c' a"— c b' a"

'

87. Let there be the four equations

a a; + 6 2/ + ^ z -\- d u =z e,

a' X -\'h' y -\-d z '\'d' u:=l dj

a" x-^-h" y + d' z -{- d" u =z d',

al'f X + h'" y + d" z + d'" u = d''

;

^giib' ^b^a'
, ^^

ab-'-^ba" ab^ba'
^ ^ g b'— b fl^ + ^ ab' —ba' ~^ 7iM::^rb^'

^'^
a" b' — b"a' ,

ab"— ba" ^^ab'— ba''

a'h'^b a^'^^'ab' --ba' ^ ab'-^ba'



Founulasfor Equations of the First Degree, 101

if we multiply the first by w, the second by w, the third by p,

and from the sum of their products subtract the fourth, we shall

have

[am + a'n + a''p— a''') x + {bm + h'n+ h"p— b''') y

+ (c 7?2 + c' /^ + c"p— d") z -{-{dm-^-d' n-^- d" p— d"') u

=: em -^ e^ 71 -{- e^' p — e'^\

In order to obtain w, we make

am -^ a' n -\- a'^ p z=z a'",

bm-^-b' n-\- b'' p = b''',

c m '\- c' n '\- c" p :=z c'"^

we then have

em ~\-c' n -\-
e"

'p — c'"

^ -" dm + d'n+ d"p-—d"''

The preceding equations, which must give m, n, and p, may be

resolved by means of the formulas found for the case of three

unknown quantities. This method will appear very simple and con-

venient ; but the nature of the results obtained above will furnish

us with a rule for finding them without any calculation.

88. To begin with the most simple case, we take an equation

with one unknown quantity, a a? = 6 ; from this we find

b

a

in which the numerator is the whole known term 6, and the de-

nominator the coefficient a, of the unknown quantity.

From the two equations

a X -\-b y =1 c, a/ x -^ b^ y =: c^,

we have already deduced

cb'— 6 c' ac' — ca'

^ ~ '^17'^ b a" ^ ""
a b' —ba'^

The denominator in this case also is composed of the letters a, a',

6, b'^ by which the unknown quantities are multiplied. We first

write a by the side of 6, which gives « J ; we then change the

order of a and 6, and obtain h a
;
prefixing to this the sign —

we have a 6 ~ 6a; lastly, we place an accent over the last

letter in each term, and the expression becomes ab^— 6 a'' for

the denominator.

From this expression we may find the numerator. To obtain

that for 0?, we have only to change each a into c, and each b into c

for that of y, putting an accent over the last letter as before ; in

this way we find cb'— be' for the one, and ac'— ca^ for the
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other. The numerator maij, therefore, be found from the denomi-

nator, as well in cases where there are two unknown quantities, as

when there is only one, by changing the coefficient of the unknown

quantity sought, into the known term or second member, and retain-

ing the accents, which belonged to the coefficients.

The same rule may be ap))lied to equations with three un-

known quantities, as we shall see by merely inspecting the

values, which result from these equations. With respect to the

denominator, it is necessary further to illustrate the method by

which it is formed. Now, since in the case of two unknown

quantities, the denominator presents all the possible transpositions

of the letters a and h, by which the unknown quantities are mul-

tiphed, it may be supposed, that when there are three unknown

quantities, their denominator will contain all the arrangements of

the three letters a, b, c. These arrangements may be formed in

the following manner.

We first make the transpositions a b— b a with the two letters a

and b, then, after the first term a b, write the third letter c, which

gives ab c; making this letter pass through all the places, observing

each time to change the sign, and not to derange the order in

which a and b respectively stand, we obtain

ab c— ac b -{- cab.

Proceeding in the same manner with respect to the second term

— 6 a, we find

— b ac -\'b c a— cb a '^

connecting these products with the preceding, and placing over the

second letter one accent, and over the third two, we have

abW— a& b'' + ca'b''— b a' c" -\'bc' a"— c b' a",

a result, which agrees with that presented by the formulas, obtain-

ed above.

From this it is obvious, that, in order to form a denominator

in the case of four unknown quantities, it is necessary to introduce

the letter d into each of the six products,

ab c— a cb '\' c ab— bac-\'bca— cba,

and to make it occupy successively all the places. The term ab c,

for example, will give the four following

;

ab cd— ab dc -^^ adbc— dabc.
If we observe the same method in regard to the five other pro-

ducts, the whole result will be twenty-four terms, in each of which,
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the second letter will have one accent, the third two, and the

fourth three. The numerators of the unknown quantities w, z, y,

and X, are found by the rule already given. "^

89. We may employ these formulas for the resolution of nu-

merical equations. In doing this, we must compare the terms of

the equations proposed with the corresponding terms of the gen-

eral equations, given in the preceding articles.

To resolve, for example, the three equations

>: 0) + 57/ + 2z=z 79,

8x + 7 y + 9z= 122,

X'\-4y-\-dzi=. 55,

it is necessary to compare the terms with those of the equations

given in art 86. We have then

a =z 7,b — d, c z=i2,d =z 79,

a' = 8, 6' zzi 7, & = 9, c/^ =1 122,

a'' z=z 1, b'' = 4, &' =z 5, d'' =z 55.

Substituting these values in the general expressions for the un-

known quantities >r, y, and z^ and going through the operations,

which are indicated, we find

a; = 4, y = 9, z =z S.

It is important to remark, that the same expressions may be

employed, even when the proposed equations are not, in all their

terms, affected with the sign -(-, as the general equations, from

which these expressions are deduced, appear to require. If we
have, for example,

2x — 9y + Sz=: 41,

— dx + 4y + 2z=z— 20,

Ucc — 7y — 6z=: 37,

in comparing the terms of these equations with the corresponding

ones in the general equations, we must attend to the signs, and the

result will be

a = + S,h = — 9, c =z +S,d = + 41,

ft/ ~ — 5, J' = + 4, c' = + 2, ^^ zz: — 20,

a'' =z + 11, b'^ — — 7, (/' = — 6, ^^' = + 37.

We are then to determine by the rules given in art. 31., the sign,

* M. Laplace, in the second part of the Memoires de VAcademie

des Sciences for 1772, p. 294, has demonstrated these rules a priori.

See also Annales des Mathematiques pures appUquees, by M. Gergon-

ne, vol. iv, p. 148.
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which each term of the general expressions for cv, y, and z, ought

to have, according to the signs of the factors of which it is com-

posed. Thus we find, for example, that the first term of the com-

mon denominator, which is a h' d\ becoming +3X+4x — 6,

changes the sign of the product, and gives — 72. If we observe

the same method with respect to the other terms, both of the nu-

merators and denominators, taking the sum of those which are

positive, and also of those which are negative, we obtain

— ^7^4 ^ 2834 _ --60 __ , 2
^ — 592— 622 "^ —30 — + ^'

— 3022 -^ 2932 _ +90 _ _ o
y — 592— 622 " —30 ""

'

3859— 3889 — ^0 _ _, .

592— 622 "" —30

Equations of the First Degree with two or more Unknown

Quantities,

C3^ + 22/ = 118> x=zlCy

13a; + 7 3/
— 341 =7iy + 43i«) «'=:— 12,

2x + ^y= 1 5 2/=50.

4-y = 18.73 } « = — 39.8121 .. .,

56 a; + 13.421 y = 763.4. 5 y = 58.5421...

fi S (^ + 5) (2/ + 7)=(*+l) (y_9) + 112) w = 3,
^' I2x+10 = 3y+l 5 y = 5.

if<^+gy = hl ""-ag-bf y- ag-bf

9.n+j,-3a+jU = 3^ ,y= ^^^.

*^ * be c ' )

{0.

•{
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'^~ b^r y-b+f-

12. <x + z=:l9[ x = 3, y = 7, z=:\6.
(y+z=z23)

Ca: + y + z=z29})
13. ;x + y— z=^i8i\ 07 = 16, y = 7f, ^ = 5i.

(x— y + z=m)
(V + y + z =2 a

14. <i my = nx
p z =z q X

am q

amp
X == ^

mp-\-np -\- mq*
anp
mp + np -\-mq^

m p -\- np -\-m q

,
,

."I
ce— hf af— cd

]^gy + tiz^l jz^
h{ae^bd)

'

^ = 18, y=32, z=z 10.

{2x+5y— 7z = — 28S)
ll.<5x— y +Sz= 221} X = 13, y =24, z=i 62.

(7x + 6y+ z^ 291)

U +2/ + ^ = 30^
18. {8^ +4y + 22:=i50V a:z=|, y =— 7, ^r = 361.

{21 x + 9y-{-3zz=L6\)

2
a? =1

,
1—— = a

X y

1 , 1
- + -= C

y ^

Alg'.
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2
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20. <
1 4. 1 4.?- 6-

_A L J- - z= 12-1-
6a: y ~z ''^'

0? 1= 6, 2/
= 9, 2: zi:

Examples in Equations involving JVegative Results.

1. To find a number which added to h gives a sum a

(1.) Let 6=: 29, a = 47.

(2.) Let 6 = 31, a = 24.

2. A father is a years, his son b years old. In how many years

will the son's age be one fourth of his father's ?

(1.) Let a = 54, & = 9.

(2.) Let a = 45, 6 = 15.

3. A cistern, into which water was let by two pipes, will be filled

by them both in a number a of hours, and by the first alone, in a

number b of hours. In what time will it be filled by the second

alone ?

(1.) Let « = 12, J = 20.

(2.) Leta= 12, 6= 10.

4. A person sent to buy oranges found that if he bought those

which cost a pence each, he should spend all his money, but if he

bought those which cost b pence each, he should have c pence left.

How many was he sent for ?

(1.) Let« = 5, b==4, c = 24.

(2.) Let « = 4, i = 6, c = 24.

5. A boat, which had started from a certain place 10 days, is

pursued by another boat from the same place and by the same

way. The first goes 4 miles every day, the other 9. In how many

days will the second overtake the first ?

6. Let n equal the number of days elapsed since the departure

of the first boat, a the number of miles it goes per day, and b the

number of miles the second goes per day.

7. What will be the change in the question if n = 10, a = 6,

and 6 = 4.

8. A courier, who goes 31 i miles every 5 hours, is sent from a

certain place ; when he had gone 8 hours another is sent after

him, and this one in order to overtake the first must go 22^ miles,

every 3 hours. When will the second overtake the first ?
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9. When all the conditions of the preceding problem remain the

same, excepting that the first courier, besides the advantage of

starting earlier, has this also, that he travelled from a place 36 miles

farther on the road : in how many hours will they come together ?

10. Make the problem general. Let the place from which the

first starts be situated a miles in advance on the road ; further, let

the number of hours by which he had the start of the other be

equal to b ; let the speed of the first be such that he goes c miles

in d hours, and the speed of the second such that he goes e miles

m / hours. In how many hours after the departure of the second

courier will they be together ?

(ab+ hc)f.
Arts, -^-r-^

—i^ hours.
de— cj

11. In how many hours will they come together, when the first

courier, instead of starting from a place a miles in advance, starts

from one as many miles backwards ? What must be done in or-

der to adapt the solution of the preceding problem to this case ?

12. Two bodies move in opposite directions; one runs c feet in

each second, the other C The two places from which they start

at the same time are distant d feet from one another. When will

they meet ?

13. In what time will the two bodies come together when that

which goes C feet each second runs after the other ?

Is the problem as it is here stated always possible ^ What is re-

quired for it to be possible ? What does the expression sig-

nify when C =:z c? What does it denote when C <^c?

Equations of the Second Degree, having only one Unknown

Quantity,

90. Hitherto I have been employed upon equations of the

first degree, or such as involve only the first power of the un-

known quantities ; but were the question proposed. To find a

number, which, multiplied by five times itself, will give a prodtict

equal to 125 5 if we designate this number by x, five times the

same will be 5 x, and we shall have

5^2--, 125.

This is an equation of the second degree, because it contains x^,

or the second power of the unknown quantity. If we free this

second power from its coefficient 5, we obtain
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x^ =z -—

,

or x^ = 25.
o

We cannot here obtain the value of the unknown ^^jantity x,

as in art. J 1., and the question amounts simply to this, to find a

number which, multiplied by itself, will give 25. It is obvious that

this number is 5 ; but it seldom happens that the solution is

so easy; hence arises this new numerical question; to find a

number, which, multiplied by itself, will give a product equal to a

proposed number ; or, which is the same thing, from the second

power of a number, to retrace our steps to the number from which

it is derived, and which is called the square root. I shall proceed,

in the first place, to resolve this question, as it is involved in the

determination of the unknown quantities, in all equations of the

second degree.

91. The method employed in finding or extracting the roots of

numbers, supposes the second power of such as are expressed by

only one figure to be known. See the nine primitive numbers with

their second powers written under them respectively.123456789
1 4 9 16 25 36 49 64 81.

It is evident from this table, that the second power of a number

expressed by one figure, contains only two figures ; 10, which is

the least number expressed by two figures, has for its square a

number composed of three, 100. In order to resolve the second

power of a number consisting of two figures, we must attend to the

method by which it is formed ; for this purpose we must inquire,

how each part of the number 47, for example, is employed in the

production of the square of this number.

We may resolve 47 into 40 -|- 7, or into 4 tens and 7 units ; if

we represent the tens of the proposed number by a, and the units

by b, the second power will be expressed by

(a + b){a+b)=:^a^ + 2ab + b^',

that is, it is made up of three parts, namely, the square of the tens,

twice the product of the tens multiplied by the units, and the square

of the units. In the example we have taken, a =z 4 tens or 40
units, and 6 = 7; we have then

a^= 1600

2ab=z 560

b^z=z 49

Total, a^ + 2 a 6 + 62 ^ 2209 = 47 x 47.
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Now in order to return, by a reverse process, from the number

2209 to iifelA^t, we may observe, that the square of the tens,

1600, 1)||^5 figure, which denotes a rank inferior to hundreds,

and that it is the greatest square, wliich the 22 hundreds, compre-

hended Ji'2209, contain ; for 22 lies between 16 and 25, that is,

between the square of 4 and that of 5, as 47 falls between 4 tens

or 40, and 5 tens or 50.

We find, therefore, upon examination, that the greatest square

contained in 22 is 16, the root of which 4 expresses the number

of tens in the root of 2209; subtracting 16 hundreds, or 1600,

from 2209, the remainder 609 contains double the product of the

tens by the units, 560, and the square of the units 49. But as

double the product of the tens by the units has no figure inferior

to tens, it must be found in the two first figures 60 of the remain-

der 609, which contain also the tens arising from the square of

the units. Now, if we divide 60 by double of the tens 8, and

neglect the remainder, we have a quotient 7 equal to the units

sought. If we multiply 8 by 7, we have double the product of

the tens by the units, 560; subtracting this from the whole re-

mainder 609, we obtain a difference 49, which must be, and in

fact is, the square of the units.

This process may be exhibited thus
;

22,09
I

47

16
I
87

60,9

60,9

000

We write the proposed number in the manner of a dividend,

and assign for the root the usual place of the divisor. We then

separate the units and tens by a comma, and employ only the

two first figures on the left, which contain the square of the tens

found in the root. We seek the greatest square 16, contained in

these two figures, put the root 4 in its assigned place, and subtract

16 from 22. To the remainder we bring down the two other

figures, 09, of the proposed number, separating the last, which

does not enter into double the product of the lens by the units,

and divide the remainder on the left by 8, double the tens in the

root, which gives for the quotient the units 7. In order to col-
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lect into one expression the two last parts of the square contained

in 609, we write 7 by the side of 8, which giveis ^, equal to

double the tens plus the units, or 2 « -f ^ 5 ^^^^s, multiplied by 7

or b, reproduces 609 z=: 2 a b -{- b^, or double the product of the

tens by the units, plus the square of the units. This being sub-

tracted leaves no remainder, and the operation shows, that 47 is

the square root of 2209.

If it were required to extract the square root of 324; the ope-

ration would be as follows
;

3,24 I 18

1

22,4

22,4

28

000

Proceeding as in the last example, we obtain 1 for the place

of tens of the root ; this doubled gives the number 2, by which

the two first figures 22 of the remainder are to be divided. Now
22 contains 2 eleven times, but the root can neither be more than

10, nor 10 ; even 9 is in fact too large, for if we write 9 by the

side of 2, and multiply 29 by 9, as the rule requires, the result is

261, which cannot be subtracted from 224. We are, therefore,

to consider the division of 22 by 2 only as a means of approxi-

mating the units, and it becomes necessary to diminish the quotient

obtained, until we arrive at a product, which does not exceed the

remainder 224. The number 8 answers to this condition, since

8 X 28 = 224 ; therefore, the root sought is 18.

By resolving the square of 18 into its three parts, we find

a^= 100

2ab=z 160

b^=i 64

Total, 324 = 18 X 18,

and it may be seen, that the 6 tens, contained in the square of the

units, being united to 160, double the product of the tens by the

units, alters this product in such a manner, that a division of it by

double the tens will not give exactly the units.

92. It will not be difficuh, after what has been said, to extract

the square root of a number, consisting of three or four figures ;

but some further observations, founded upon the principles above
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laid down, may be necessary to enable the reader to extract the

root of any number whatever.

No number less than 100 can have a square consisting of more

than four figures, since that of 100 is 10000, or the least number

expressed by five figures* In order, therefore, to analyze the

square of any number exceeding 100, of 473, for example, we
may resolve it into 470 -f- 3, or 47 tens plus 3 units. To obtain

its square from the formula,

a^^2ab + b^

we make a =: 47 tens = 470 units, b z= 3 units, then

a^ =: 220900

2ah=z 2820

b^= 9

Total, 223729 =:: 473 X 473.

In this example, it is evident that the square of the tens has no

figure inferior to hundreds, and this is a general principle, since

tens multiplied by tens, always give hundreds, (Arith. 32).

It is therefore in the part 2237, which remains on the left of the

proposed number, after we have separated the tens and units, that

it is necessary to seek the square of the tens ; and as 473 lies be-

tween 47 tens, or 470, and 48 tens, or 480, 2237 must fall be-

tween the square of 47 and that of 48 ; hence the greatest square

contained in 2237, will be the square of 47, or that of the tens of

the root. In order to find these tens, we must evidently proceed,

as if we had to extract the square root of 2237 only ; but instead

of arriving at an exact result, we have a remainder, which contains

the hundreds arising from double the product of the 47 tens mul-

tiplied by the units.

The operation is as follows
;

22,37,29
j
473

IG

G3,7

G0,9

87

943

282,9

282,9

We first separate the two last figures 29, and in order to extract
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the root of the number 2237, which remai/;.' on the left, we fur-

ther separate the two last figures 37 of this number ; the pro-

posed number is then divided into portions of two figures, begin-

ning on the right and advancing to the left. Proceeding with the

two first portions as in the preceding article, we find the two first

figures 47 of the root ; but we have a remainder 28, which, joined

to the two figures 29 of the last portion, contains double the pro-

duct of the 47 tens by the units, and the square of the units. We
separate the figure 9, which forms no part of double the product of

the tens by the units, and divide 282 by 94, double the 47 tens
^

writing the quotient 3 by the side of 94, and multiplying 943 by 3,

we obtain 2829, a number exactly equal to the last remainder, and

the operation is completed.

93. In order to show, by what method we are to proceed with

any number of figures, however great, I shall extract the root of

22391824. Whatever this root may be, we may suppose it

capable of being resolved into tens and units, as in the preceding

examples. As the square of the tens has no figure inferior to

hundreds, the two last figures 24 cannot make a part of it ; we

may therefore separate them, and the question will be reduced

to this, to find the greatest square contained in the part 223918,

which remains on the left. This part consisting of more than

two figures, we may conclude, that the number, which expresses

the tens in the root sought, will have more than one figure ; it

may therefore be resolved, like the others, into tens and units.

As the square of the tens does not enter into the two last figures

18 of the number 223918, it must be sought in the figures 2239,

which remain on the left ; and since 2239 still consists of more

than two figures, the square, which is contained in it, must have

a root which consists of at least two ; the number which ex-

presses the tens sought will therefore have more than one figure
;

it is then, lastly, in 22 that we must seek the square of that,

which represents the units of the highest place in the root re-

quired. By this process, which may be extended to any length

we please, the proposed number may be divided into portions

of two figures from right to left ; it must be understood, how-

ever, that the last figure on the left may consist of only one

figure.
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1

87

63,9 943

60,9 9462

301,8

282 9

1892,4

1892 4
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Having divided the proposed number into portions as below,

we proceed with the three first portions, as 22,39,18,24 |
4732

in the preceding article ; and when we
have found the three first figures 473 of the

root, to the remainder 189, we bring down
the fourth portion 24, and consider the

number 18924, as containing double the

product of the 473 tens already found by

the units sought, plus the square of these

units. We separate the last figure 4 ; di- 0000

vide thpse, which remain on the left, by 946, double of 473, and

then make trial of the quotient 2, as in the preceding tjxamples.

Here the operation, in the present case, terminates ; but it is

very obvious, that if we had one portion more, the four figures

already found 4732, would express the tens of a root, the units

of which would remain to be sought ; we should proceed, there-

fore, to divide the remainder now found, together with the first fig-

ure of the following portion, by double of these tens, and so on

for 6ach of the portions to be successively brought down.

94. If, after having brought down a portion, the remainder,

joined to the first figure of this portion, does not contain double

of the figures already found, a cipher must be placed in the root

;

for the root, in this case, will have no units of this rank; the

following portion is then to be brought down, and the operation

to be continued as before. The example subjoined will illustrate

this case. The quantities to be subtracted are 49,42,09
|

703

notput down, but the subtractions are suppos- 04,20, 9
|
1403

ed to be performed mentally, as in division. 0,00,

95. Every number, it will be perceived, is not a perfect square.

If we look at the table given, page 108, we shall see that between

the squares of each of the nine primitive numbers, there are in-

tervals comprehending many numbers,' which have no assignable

root ; 45, for instance, is not a square, since it falls between 36

and 49. It very often happens, therefore, that the number, the

root of which is sought, does not admit of one ; but if we attempt

to find it, we obtain for the result the root of the greatest square,

which the number contains. If we seek, for exaniple, the root of

2276, we obtain 47, and have a remainder 67, which shows, that

the greatest square contained in 2276, is that of 47 or 2209.

Alg. 15
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As a doubt may sometimes arise, after having obtained the

root of a number which is not a perfect square, whether the

root found be that of the greatest square contained in the num-

ber, I shall give a rule, by which this m1ay be readily determined.

As the square of a + 6 is

if we make 6 = 1, the square of a + 1 will be

a quantity which differs from a^, the square of a, by double of a

plus unity. Therefore, if the root found can be augmented by

unity, or more than unity ^ its square, subtracted from the proposed

number, ivill leave a remainder at least equal to twice this root plus

unity. Whenever this is not the case, the root obtained will be,

in fact, that of the greatest square contained in the number pro-

posed.

96. Since a fraction is multiplied by another fraction, when

their numerators are multiplied together, and their denominators

together, it is evident that the product of a fraction muhiplied by

itself, or the square of a fraction is equal to the square of its nu-

merator, divided by the square of its denominator. Hence it fol-

lows, that to extract the square root of a fraction, we extract the

square root of its numerator and that of its denominator. Thus

the root of f{ is f , because 5 is the square root of 25, and 8 that

of 64.

It is very important to remark, that not only are the squares of

fractions, properly so called, always fractions, but every fractional

number which is irreducible (Arith. 59), will, when multiplied by

itself, give a fractional result, which is also irreducible.

97. This proposition depends upon the following ; Every prime

number P, which will divide theproduct AB of two numbers A and

B, will necessarily divide one of these numbers.

Let us suppose, that it will not divide B, and that B is the great-

er ; if we designate the entire part of the quotient by q, and the

remainder by B\ we have

B = qP + B',

multiplying by ./3, we obtain

/2B = qAP + jlB',

and dividing the two members of this equation by P, we have

AB n.AB'.-p-=zqA+-p-;
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from which it appears, that if AB be divisible by P, the product

AB^ will be divisible by the same number. Now B^, being the

remainder after the division of B by P, must be less than P

;

therefore B' cannot be divided by P ; if we divide P by B' we

have a quotient q^ and a remainder B^' ; if further we divide P
by B'% we have a quotient q" and a remainder B'"^ and so on,

since P is a prime number.

We have, therefore, the following series of equations

;

p ~ ^/ JS/ + £//, P zz: q" B'' + B^'', &c.

multiplying each of these by A, we obtain

AP = q' AB' + AB'', AP z=z q'^ AB'' + AB''\ &c.

dividing by P, we have

AB'
,
AB" . ,,AB" . AB" .

Az=iq' -p- + -p-, A =: q" —p- + —pp-, &C.

From these results it is evident, that if AB' be divisible by P, the

products AB"^ AB'", he. will also be divisible by it. But the

remainders B', B", B'", he, are becoming less and less, continu-

ally, till they finally terminate in unity, for the operation exhibited

above may be continued in the same manner, while the remainder is

greater than 1, since P is a prime number. Now when the re-

mainder becomes unity, we have the product .^ X 1, which must

be divisible by P ; therefore A also must be divisible by P.

Hence, if the prime number P, which we have supposed not to

divide P, will not divide A, it will not divide the product of these

numbers.

(This demonstration is taken principally from the Theorie des

Nombres of M. Legendre.)

98. Now when the fraction - is irreducible, there is no prime

number which will divide, at the same time, 6 and a ; but, from

the preceding demonstration, it is evident, that every prime num-

ber, which will not divide «, will not divide a X a, or a^ ; every

prime number, which will not divide h, will not divide b X h, or

b^; the numbers a^ and &^ are, therefore, in this case, prime to

each other; and consequently the square -^ of the fraction-, being

irreducible, as well as the fraction itself, cannot become an entire

number.

99. From this last proposition it follows, that entire numbers,

except only such as are perfect squares, admit of no assignable rooty
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either among whole numbers or fractions. Yet it is evident, that

there must be a quantity, which, muhiplied by itself, will produce

any number whatever, 2276, for instance, and that in the present

case, this quantity lies between 47 and 48 ; for 47 X 47 gives a

product less than this number, and 48 X 48 gives one greater.

Dividing then the difference between 47 and 48 by means of

fractions^ we may obtain numbers that, multiplied by themselves,

will give products greater than the square of 47, but less than

that of 48, and which will approach nearer and nearer to the

number 2276.

The extraction of the square root, therefore, applied to num-

bers which are not perfect squares, makes us acquainted with a

new species of numbers, in the same manner, as divisidn gives

rise to fractions; but there is this difference between fractions

and the roots of numbers which are not perfect squares; that

the former, which are always composed of a certain number of

parts of unity, have with unity a common measure, or a relation

which may be expressed by whole numbers, which the latter

have not. «

If we conceive unity to be divided into five parts, for example,

we express the quotient arising from the division of 9 by 5, or

f , by nine of these parts
; \ then, being contained five times in

unity, and nine times in f , is the common measure of unity and

the fraction f , and the relation these quantities have to each other

is that of the entire numbers 5 and 9.

Since whole numbers, as well as fractions, have a common meas-

ure with unity, we say that these quantities are commensurable with

unity, or simply that they are commensurable; and since their re-

lations or ratios^ with respect to unity, are expressed by entire

numbers, we designate both whole numbers and fractions by the

common name of rational numbers.

On the contrary, the square root of a number, which is not a

perfect square, is incommensurable or irrational, because, as it

cannot be represented by any fraction, into whatever number of

parts we suppose unity to be divided, no one of these parts will be

sufficiently small to measure exactly, at the same time, both this

root and unity.

In order to denote, in general, that a root is to be extracted,

whether it can be exactly obtained or not, we employ the charac-

ter %/"", which is called a radical sign ;
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v/i6 is equivalent to 4,

\/2 is incommensurabie or irrational.

100. Although we cannot obtain, either among whole numbers

or fractions, the exact expression for \/% yet we may approxi-

mate it, to any degree we please, by converting this number into

a fraction, the denominator of which is a perfect square. The
root of the greatest square contained in the numerator will then

be that of the proposed number expressed in parts, the value of

which will be denoted by the root of the denominator.

If we convert, for example, the number 2 into twenty-fifths,

we have ||. As the root of 50 is 7, so far as it can be expressed

in whole numbers, and the root of 25 exactly 5, we bbtain |, or

If for the root of 2, to within one fifth.

101. This process, founded upon what was laid down in article

96., that the square of a fraction is expressed by the square of the

numerator divided by the square of the denominator, may evi-

dently be applied to any kind of fraction whatever, and more

readily to decimals than to others. It is manifest, indeed, from

the nature of multiplication, that the square of a number express-

ed by tenths will be hundredths, and that the square of a number

expressed by hundredths will be ten thousandths, and so on ; and

consequently, that the number of decimal figures in the square is

always double that -of the decimal figures in the root. The truth

of this remark is further evident from the rule observed in the

multiplication of decimal numbers, which requires that a product

should contain as many decimal figures, as there are in both the

factors. In any assumed case, therefore, the proposed number*

considered as the product of its root multiplied by itself, must

have twice as many decimal figures as its root.

From what has been said, it is clear, that in order to obtain

the square root of 227, for example, to within one hundredth, it

is necessary to reduce this number to ten thousandchs, that is, to

annex to it four ciphers, which gives 2270000 ten thousandths,

Tlie root of this may be extracted in the same raannner, as that

of an equal number of units ; but to show that the result is hun-

dredths, we separate the two last figures on the right by a comma.

We thus find that the root of 227 is 15,06, accurate to hundredths.

The operation may be seen below

;
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2,27,00,00 1506
25"

3006
J2,7

2 00 00
19 64

If there are decimals already in the proposed number, they

should be made even. To extract, for example, the root of 51,7,

we place one cipher after this number, which makfes it hun-

dredths ; we then extract the root of 51,70. If we proposed to

have one decimal more, we should place two additional ciphers

after this number, which would give 51,7000 ; we should then

obtain 7,19 for the root.

If it were required to find the square root of the numbers 2

and 3 to seven places of decimals, we should annex fourteen ci-

phers to these numbers ; the result would be

V2= 1,4142136, v5= 1,7320508.

102. When we have found more than half the number of

figures, of which we wish the root to consist, we may obtain the

rest simply by division. Let us take, for example, 32976; the

square root of this number is 181, and the remainder, 215. If

we divide this remainder 215, by 362, double of 181, and extend

the quotient to two decimal places, we obtain 0,59, which must

be added to 151 ; the result will be 181,59 for the root of 32976,

which is accurate to within one hundredth.

In order to prove that this method is correct, let us designate

the proposed number by JV, the root of the greatest square con-

tained in this number by a, and that which it is necessary to add

to this root to make it the exact root of the proposed number by

6 ; we have then

JViz:a2^2aJ + 6^
from which we obtain

JV— a2 = 2a6 +S2.
dividing this by 2 «, we find

2a "-^ + 2 a'

From this result it is evident, tha,t the first member may be

taken for the value of b^ so long as the quantity ^r— is less than a
At it

unit of the lowest place found in b. But as the square of a num-

ber cannot contain more than twice as many figures as the num-

ber itself, it follows, that if the number of figures in a exceeds

62
double those in &, the quantity ^ will then be a fraction.
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In the preceding example, a = 181 units^ or 18100 hundredths,

and consequently contains one figure more than the square of

59 hundredths : .the fraction then ^r— becomes in this case,
2 a

(59)2 34gi ; . r .

2 V IHmo ^ ofonn ? 3"" ^s ^^ss than a unit ol the second part

59, or than a hundredth of a unit of the first.

103. This leads to a method of approximating the square root

of a number by means of vulgar fractions. It is founded on the

circumstance, that «, being the root of the greatest square con-

52
tained in JV, h is necessarily a fraction, and ^ being much smal-

ler than 6, may be neglected.

If it were required, for example, to extract the square root of

2 ; as the greatest square contained in this number is 1, if we

subtract this, we have a remainder, 1. Dividing this remainder

by double of the root, we obtain | ; taking this quotient for the

value of the quantity 6, we have, for the first approximation to

the root, 1 + i? or |. Raising this root to its square, we find f,

which, subtracted from 2 or |, gives for a remainder — |. In

this case the formula

becomes

~2 a - ^ + 2 a'

12 '2a
Substituting — yV for 6, we have for the second approximation

I— y'^ = i| ; taking the square of j|, we find |ff , a quantity,

which still exceeds 2 or f ||. Substituting |J for a, we obtain

12 X 34 ' 2a^

which gives

r L__ - _ J_ .

^ — 12 X 34
"^ 408

'

the third approximation will then be

17 _ 1 _.17X 34--1 _ 577

12 12X34"" 408 "^408'

This operation may be easily continued to any extent we

please. I shall give, in the Supplement to this treatise, other for-

mulas more convenient for extrapting roots in general.
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104. In order to approximate the square root of a fraction, the

method, which first presents itself, is, to extract, by approxima-

tion, the square root of the numerator and that of the denomina-

tor ; but with a little attention it'will be seen, that we may avoid

one of these operations by making the denominator a perfect

square. This is done , by multiplying the two terms of the pro-

posed fraction by the denominator. If it were required, for ex-

ample, to extract the square root of f , we might change this

fraction into

3 X 7 _ 21

7x7"" 49'

by multiplying its two terms by the denominator, 7, Taking the

root of the greatest square contained in the numerator of this

fraction, we liave | for the root qf f , accurate to within |.

If a greater degree of exactness were required, the fraction f

must be changed by approximation or otherwise into another, the

den')minator of which is the square of a greater number than 7.

We shall have, for example, the root sought within y^, if we

convert f into 225ths, since 225 is the square of 15; thus the

fraction becomes ^^* of one 225th, or-//^, within -^l^ ; the root of

^W falls between j\ and |j, but approaches nearer to the second

fraction than to the first, because 96 approaches nearer to a hun-

dred than to 81 ; we have then j| or f for the root of
-f

within y";^.

By employing decimals in. approximating the root of the nu-

merator of the fraction f^, we obtain 4,583 for the approximate

root of the numerator 21, which is to be divided by the root of

the new denominator. The quotient thence arising, carried to

three places of decimals, becomes 0,655.

105. We are now prepared to resolve all equations involving

only the second power of the unknown quantity connected with

known quantities.

We have only to collect into one member all the terms containing

this power, to free it from the quantities, by which it is multiplied

(11); we then obtain the value of the unknown quantity by ex-

tracting the square root of each member.

Let there be, for example, the equation

Making the divisors to disappear, we find first

15a:2_.168 = 84— 14a?2.

Transposing to the first member the term 14 x^y and to the sec-

ond the term 168, we have
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I5x^+ 14 x^ = 84 + 168,

or 29 x^ = 252,

and x^ ~ VgS

It should be carefully observed, that to denote the root of the

fraction V/j ^^^^ sign v" is made to descend below the line,

which separates the numerator from the denominator. If it were

written thus, —^, the expression would designate the quotient

arising from the square root of the number 252 divided by 29 ; a

result different from \/^, which denotes, that the division is to

be performed before the root is extracted.

Let there be the literal equation

a x"^ ~{- P zzz c x^ -{- d^
'y

proceeding as with the above, we obtain successively

ax^— cx^ =z d^— P,

d^— 63

\ a

— P
' c

I would remark here, that in order to designate the square root

of a compound quantity, the upper line must be extended over the

whole radical quantity.

The root of the quantity 4 a^ b— 2 6^ + c^ is written thus,

^4a^i)^2P + c^,

or rather

^{4a^b— 2P + d^),

by substituting, for the line extended over the radical quantity, a

parenthesis including all the parts of the quantity, the root of which

is required. This last expression may often appear preferable to

the other (35).

In general, every equation of the second degree of the kind we

are here considering, may, by a transposition of its terms, be re-

duced to the form

-— = a,

- designating the coefficient, whatever it may be, of ar^. We

then obtain

Alg. 16

x' = ^A
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'9

106. With respect to numbers taken independently, this solution

is complete, since it is reduced to an operation upon the num-

ber either entire or fractional, which the quantity— represents, an

arithmetical operation leading always to an exact result, or to one,

which approaches the truth very nearly. But in regard to the

signs, with which the quantities may be affected, there remains,

after the square root is extracted, an ambiguity, in consequence of

which every equation of the second degree admits of two solutions,

while those of the first degree admit of only one.

Thus in the general equation x^ = 25, the value of x, being the

quantity, which, raised to its square, will produce 25, may, if we

consider the quantities algebraically, be affected either with the

sign + or — ; for whether we take -[- 5, or — 5, for this value,

we have for the square

+ 5x+5=: + 25, or —5x— 5z=:+25;

we may therefore take

x=z + 5,

or X =: — 5.

For the same reason, from the general equation

we have

\P\P

X=:— N.
\P

Both these expressions are comprehended in the following

;

r show

p

p
in which the double sign ± shows, that the numerical value of

P
may be affected with the sign -|- or —

.

From what has been said, we deduce the general rule, that the

double sign db is to he considered as affecting the square root of

every quantity whatever.

It may be here asked, why x, as it is the square root of x^, is

not also affected with the double sign ± f We may answer, first,



Equations of the Second Degree with one Unknown Quantity. 123

that the letter x, having been taken without a sign, that is, with

the sign -f-, as the representative of the unknown quantity, it is its

value when in this slate, which is the subject of inquiry ; and that,

when we seek a number >r, the square of which is 6, for example,

there can be only two possible solutions ; x =i -{- \/'h^ x z=z —
-y/fe. Again, if in resolving the equation x^ zn &, we write ±ix =.

zfc \/h, and arrange these expressions in all the different ways, of

which they are capable, namely,

J^ X ~ -{- y/J, X =2 V" 6,

+ X=: V i, 0? zz: 4- ^h,

we come to no new result, since by transposing all the terms of

the equations — x =z— i^l, — x =i -\- ^h. or which is the same

thing, by changing all the signs (57), these equations become iden-

tical with the first.

107. It follows from the nature of the signs, that if the second

member of the general equation

x^ =
P̂

were a negative number, the equation would be absurd, since the

square of a quantity affected either with the sign -[- or —, having

always the sign +, no quantity, the square of which is negative,

can be found either among positive or negative quantities.

This is what is to be understood, when we say, that the root of

a negative quantity is imaginary.

If we were to meet with the equation

x^ + 2b=z 9,

we might deduce from it

a;2
- 9_ 25,

or ^^= — 16;

but, there is no number, which, multiplied by itself, will produce

— 16. It is true, that — 4 multiplied by -{- 4, gives — 16 ; but

as these two quantities have different signs, they cannot be consid-

ered as equal, and consequently their product is not a square.

This species of contradiction, which will be more fully considered

hereafter, must be carefully distinguished from that mentioned in

art. 58., which disappears by simply changing the sign of the un-

known quantity ; here it is the sign of the square a?^, which is to

be changed.

108. To be complete, an equation of the second degree, with

only one unknown quantity, must have three kinds of terms, name-
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ly, those involving the square of the unknown quantity, others con-

taining the unknown quantity of the first degree, and lastly, such as

comprehend only known quantities. The following equations are

of this kind

;

^2— 4^ =12, 4x — ^x^zzi 4— 2a?.

The first is, in some respects, more simple than the second,

because it contains only three terms, and the square of x is posi-

tive, and has only unity for a coefficient. It is to this last form,

that we are always to reduce equations of the second degree,

before resolving them; they may then be represented by this

formula, x^ -j-px =:q,

in which j:? and q denote known quantities, either positive or neg-

ative.

It is evident, that we may reduce all equations of the second de-

gree to this state, 1. by collecting into one member all the terms

involving x (10), 2. by changing the sign of each term of the

equation, in order to render that of x^ positive, if it was before

negative (57), 3. by dividing all the terms of the equation by the

multiplier of x^, if this square have a multipler (11), or by multi-

plying by its divisor, if it be divided by any number (12).

If we apply what has just been said to the equation

4a?— |a?^ = 4— 2 x,

we have, by collecting into the first member all the terms involv-

ing a?,

— I o;^ + 6 a? := 4,

by changing the signs,

I 0?^— 6 a; 1= — 4,

multiplying by the divisor 5,

Sx^—30x zi: — 20,

dividing by the multiplier 3,

x^—10x=:~%\
If we now compare this equation with the general formula

x^ -{- p X =z q,

we shall have

p=z— 10, ^ = — V-

109. In order to arrive at the solution of equations thus pre-

pared, we should keep in mind what has been already observed

(34), namely, that the square of a quantity, composed of two

terms, always contains the square of the first term, double the pro-

duct of the first term multiplied by the second, and the square of
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the second ; consequently the first member of the equation

x^ -{- 2 a X -^^ a^ :=i b,

in which a and b are known quantities, is a perfect square, arising

from X -{- a, and may be expressed thus,

{x -\~ a) (a? -f- a) =1 6.

If we take the square root of the first member and indicate that of

the second, we have

X -{-a zzz dL v^^j

an equation, which, considered with respect to x, is only of the

first degree ; and from which we obtain, by transposition,

X z=: — a ± v/6.

An equation o^ the second degree may therefore be easily resolv-

ed, whenever it can be reduced to the form

x''^ -{- 2 a X -\- a^ ^=: h,

that is, whenever its first member is a perfect square.

But the first member of the general equation

x^ -\- p X =z q

contains already two terms, which may be considered as forming

part of the square of a binomial ; namely, x^, which is the square

of the first term x, and p x, or double the first multiplied by the

second, which second is consequently only half of p, or ip. To
complete the square of the binomial x -\- ^p, there must be also

the square of the second term, ^p ; but this square may be form-

ed, since p and Ip are known quantities, and it may be added to

the first member, if, to preserve the equality of the two members,

it be added at the same time to the second ; and this last member

will still be a known quantity.

As the square of ^p is ip^, if we add it to the two members

of the proposed equation,

x^ -^ p X :=z q,

we shall have

^2 ^pa; + Jj9- =iq + lpK
The first member of this result is the square of a? + ij?

5 taking

then the root of the two members, we have

x+ip = ±V?+ii>S (106);

by transposition this becomes

or which is the same thing
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and xz=:— }p— \^q~+Tp^'
I have prefixed the sign + to the second term ^p, of the root

of the first member of the above equation, because the second

term of this member is positive ; the sign — is to be prefixed in

the contrary case, because the square x^ — 2 ax -{- a^ answers to

the binomial x— a.

Any equation whatever of the second degree may be resolved,

by referring it to the general formula,

x^ -\- p X =:^ q y

or more expeditiously, by performing immediately upon the equa-

tion the operations represented under this formula, which, express-

ed in general terms, are as follows

;

To make the first member of the proposed equation a perfect

square^ by adding to it, and also to the second, the square of half

the given quantity, by which the first power of the unknown quan-

tity is multiplied ; then to extract the square root of each member,

observing, that the root of the first member is composed of the un-

known quantity, and half of the given number, by which the un-

known quantity in the second term is multiplied, taken with the

sign of this quantity, and that the root of the second member must

have the double sign =h, and be indicated by the sign \/, if it can-

not be obtained dii^ectly.

See this illustrated by examples.

110. To find a number such, that if it be multiplied by 7, and

this product be added to its square, the sum will be 44.

The number sought being represented by x, the equation will

evidently be

a?2 4- 7 0? = 44.

In order to resolve this equation, we take J, half of the coeffi-

cient 7, by which x is multiplied ; raising it to its square we obtain

Y ; this added to each member gives

reducing the second member to a single term, we have

x^ +7x+ V ='!'.

The root of the first member, according to the rule given above, is

a? + I, and we find for that of the second y ; whence arises the

equation

X+l=zdz^^^,

from which we obtain

-r — 7 _i- i_s
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or 0? = — 1+ V = 1 = 4,

X =z |- y =z \^ = 11.

The first value of x solves the question in the sense, in which it

was enunciated, since we have by this value

x^ = 16

7a:ri:28

sum 44

As to the second value of x, since it is affected with the sign

— , the term 7 x, which becomes

7 x—n=z— 77,

must be subtracted from x^, so that the enunciation of the ques*

tion resolved by the number 1 1 is this,

To find a number such, that 7 times this number being subtracted

from its square, the remainder will be 44.

The negative value then here modifies the question in a manner,

analogous to what takes place, as we have already seen, in equa-

tions of the first degree.

If we put the question, as enunciated above, into an equation, we
obtain

x^ — 7 0? = 44,

this becomes, when resolved,

X 7 1- 1 5
2 5

^ 7 15 3 4^ 2 2 2 ^*

The negative value of x becomes positive, as it satisfies precise-

ly the new enunciation, and the positive value, which does not thus

satisfy it, becomes negative.

Hence we see, that in equations of the second degree, algebra

unites under the same formula two questions, which have a certain

analogy to each other.

111. Sometimes enunciations, which produce equations of the

second degree, admit of two solutions. The following is an ex-

ample
;

To find a number such, that if 15 be added to its square, the

sum will be equal to 8 times this number.

Let X be the number sought ; the equation arising from the pro-

blem is then x^ + lb =: S x.
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This equation reduced to the form prescribed in art. 108., be-

comes

x^ _8a: + 16 z= — 15 + 16,

^2_8a;+ 16zz= 1,

X— 4=± 1,

X:=z 4±1,
or X = 5,

a:=: 3.

There are therefore two different numbers 5 and 3, which fulfil

the conditions of the question.

112. Questions sometimes occur, which cannot be resolved pre-

cisely in the sense of the enunciation, and which require to be

modified. This is the case, when the two roots of the equation

are negative, as in the following example,

0^2 ^ 5 0? + 6 =z 2.

This equation, which denotes, that the square of the number

sought, augmented by 5 times this number, and also by G, will give

a sum equal to 2, evidently cannot be verified by addition, as is

implied, since 6 already exceeds 2. Indeed, if we resolve it, we

find successively

x^ •-{- bx :=.— 4,

x^ +bx + V = y — 4 = f

,

^ =— f + l = — i.

a:=— f— 1=1— 4.

From the sign —, with which the numbers 1 and 4 are affected, it

may be seen that the term 5 x must be subtracted from the others,

and that the true enunciation for both values is.

To find a number such, that if 5 times this number be subtracted

from its square, and 6 be added to the remainder, the result will be 2.

This enunciation furnishes the equation,

x^ — 5x + 6=:2,

which gives for x the two positive values 1 and 4.

113. Again, let the following problem be proposed
;

To divide ajiumber p into two parts, the product of which shall

be equal to q.

If we designate one of these parts by x, the other will be ex-

pressed by p — X, and their product will be p x — x^ ; we have

then the equation px— ar^ = q,
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or, changing the signs,

x^-F X=z— q;
resolving this last, we

X

find

= iP ± Vip^-q.
If now we suppose

P = 10, 5 = 21,

we have

or 0?= 5 =b 2,

X == 7,

Xz=:3,

that is, one of the parts will be 7, and the other consequently

10 — 7, or 3.

If, on the contrary, we take 3 for x, the other part will be

10— 3 or 7 ; so that the enunciation, as it stands, admits, strictly

speaking, of only one solution, since the second amounts simply

to a change in the order of the parts.

If we examine carefully the value of x in the question we have

been considering, we shall see that we cannot take any numbers

indifferently for^ and q, for if q exceed"^ or the square of ^p,

the quantity j q becomes negative, and we are presented with

that species of absurdity mentioned in art. 107.

If we take, for example,

j?=i: 10 and ^=30,
we have

0? = 5 dt v/25— 30 ==: 5 ± v/^^

;

the problem then with these assumptions is impossible.

114, The absurdity of questions, which lead to imaginary roots,

is discovered only by the result, and we may wish to determine by

characters, which are found nearer to the enunciation, in what con-

sists the absurdity of the problem, which gives rise to that of the

solution ; this we shall be enabled to do by the following conside-

ration.

Let d be the difference of the two parts of the proposed nura-

n fj t) d
ber 5 the greater part will be | + ~, the less ^ — g (3) ; but it

has been proved (29, 30, & 34) that

Alg. 17 ^^>
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V2
"^ 2/ V2 2/ 4 4 '

therefore, the product of the two parts of the proposed number,

whatever they may be, will always be less than —^ or than the

square of half their sum, so long as d is any thing but zero ; when

d is nothing, each of the two parts being equal to ^, their product

will be only ^ . It is then absurd to require it to be greater ; and

it is just, that algebra should answer in a manner contradictory to

established principles, and thereby show, that what is sought does

not exist.

What has been proved concerning the equation

x^— p X =: — q,

furnished by the preceding question, is true of all those of the

second degree, where q is negative in the second member, the on-

ly equations, which produce imaginary roots, since the termj-,

placed under the radical sign, preserves always the sign -j-j what-

ever may be that of p. Indeed, it is evident that the equation

x^ -^-p X =: — q, or x^ -{- p X -\- q ==: 0,

will admit of no positive solution, since the first member contains

only affirmative terms ; and, to ascertain whether the unknown

quantity x can be negative, we have only to change x into — y.

The unknown quantity y would then have positive values, which

would be furnished by the equation

y^—py + q = ^^ or i/—py = — q,

which is precisely the same as that in the preceding article ; but

as the values of x can be real only when those of y would be so,

they become therfore imaginary in the case under consideration,

when q exceeds j-.

It will be perceived then from what has been said, how, and for

what reason, when the known term of an equation of the second

degree is negative in the second member, and greater than the

square of half the coefficient of the first power of the unknown

quantity, this equation can have only imaginary roots.

115. The expressions

and, in general, those, which involve the square root of a negative
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quantity, are called imaginary quantities^. They are Qiere sym-

bols of absurdity, that take the place of the value, which we

should have obtained, if the question had been possible.

They are not, however, to be neglected in the calculation, be-

cause it sometimes happens, that when they are combined accord-

ing to certain laws, the absurdity disappears, and the result be-

comes real. Examples of this kind will be found in the Supple-

ment to this treatise.

116. As it is important that learners should have just ideas re-

specting all those analytical /«c^5, which appear to be derived from

familiar notions, I have thought it proper to add some observations

to what has been said (106), on the necessity of admitting two so-

lutions in equations of the second degree.

I shall show that, if there exists a quantity a, which, substituted

in the place of x, verifies the equation of the second degree,

x^ -|- p X = q, and is consequently the value of x, this unknown

quantity will still have another value. Now, if we substitute a for

0?, the result mW ha a^. -\-p a :=^ q ] and since, by supposition, a

represents the value of x, q will be necessarily equal to the quan-

tity a!^ '\- p a) we may then write this quantity in the place of q^

in the proposed equation, which thus becomes

x^ -\-px:=:z a^ -\-p a.

Transposing all the terms of the second member, we have

x^ -{- p X— «2 —p a = 0,

which may be written,

x^ — a^ + p (a?— a) = ;

and because

x^ —a^ :=z{x + a) {x— a), (34),

it is obvious, at once, that the first member is divisible by x— a,

and will give an exact quotient, namely, x + a-{-p; we have

then,

x^ +px— q=ix^ —a^ +p{x— a) = (a?— a) (x + a+p).

Now it is evident, that a product is equal to zero, when any one

of its factors whatever becomes nothing ; we shall have then

[x— a) (a? + « +P) == ^'

not only when x— a = 0, which gives

X =za,

* It would be more correct to say, imaginary expressions, or sym-

hols, as they are not quantities.
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but also when x -\' a -\- p =• 0, from which is deduced

X = — a—p.

Therefore, if a is one of the values of a?, — a—p will neces-

sarily be the other.

This result agrees with the two values comprehended in the

formula

x=z — lp±s/q + lp^ ;

for if we take for a the first value, — ii^ + \/ g + \p^^ ^® °^"

tain for the other

^a—p:= + \p— s/q-{-lp^—p== — ip—Vq + \p'',

which is in fact the second value.

These remarks contain the germ of the general theory of equa-

tions of whatever degree, as will appear hereafter, when the sub-

ject will be resumed.

117. The difficulty of putting a problem into an equation, is

the same in questions involving the second and higher powers, as

in those involving only the first, and consists always in disentang-

ling and expressing distinctly in algebraic characters all the con-

ditions comprehended in the enunciation. The preceding ques-

tions present no difficulty of this sort ; and, although the learner is

supposed to be well exercised in those of the first degree, T shall

proceed to resolve a few questions, which will furnish occasion for

some instructive remarks.

A person employed two laborers, allowing them different wages ;

the first received, at the end of a certain number of days, 96 francs,

and the second, having worked six days less, received only 54

francs ; if this last had worked the whole number of days, and the

other had lost six days, they would both have received the same

sum ; it is required to find how many days each worked, and what

sum each receivedfor a dayh work.

This problem, which at first view appears to contain several un-

known quantities, may be easily solved by means of one, because

the others may be readily expressed by this.

If X represent the number of days' work of the first laborer,

X— 6 will be the number of days' work of the second,
ggfr.

-^-- will be the daily wages of the first,

54
3. Q

the daily wages of the second
;

if this last had worked x days, he would have earned
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54 54 X
00 X ^or

and the first working x— 6 days, would have received only

The equation of the problem then will be

_5£x_ __ 96 (a;— 6)

X — 6 X

The first step is to make the denominators disappear ; the equa-

tion then becomes

54a;2 =96 (a?— 6) (^— 6).

As the numbers 54 and 96 are both divisible by 6, the result may

be simplified by division ; we shall then have

9<r2 = 16 (^— 6) (a;— 6).

This last equation may be prepared for solution according to the

rule given art. 108., but as the object of this rule is to enable us

with more facility to extract the root of each member of the equa-

tion proposed, it is here unnecessary, because the two members

are already presented under the form of squares ; for it is evident,

that 9 x^ \s the square of 3 a?, and 16 (a?— 6) (x— 6) the square

of 4 (^— 6). We have then

3^= ±4(0? — 6) ;

from which may be deduced

3 a: z= 4 0?— 24, 0? =: 24,

3 .a? = ~ 4 0? + 24, a; = V

.

By the first solution, the first laborer worked 24 days, and con-

sequently earned |f or 4 francs per day, while the second worked

only 18 days, and received f f or 3 francs per day.

The second solution answers to another numerical question, con-

nected with the equation under consideration, in a manner analo-

gous to what was noticed in art. 111.

118. Jl hanker receives two notes against the same person ; the

first o/* 550 francs, payable in seven months, the second of 720

francs, payable in four months, and givesfor both the sum of 1200

francs ; it is required to find what is the annual rate of interest,

according to which these notes are discounted.

In order to avoid fractions in expressing the interest for seven

months and four months, we shall represent by 12 x the interest of

100 francs for one year ; the interest for one month will then be x.

The present value of the first note will accordingly be found by

the proportion,
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100 + 7^ : 100 : : 550 : j^^^f^ C-^^^'^^- l^O.)

;

and the present value of the second note by the proportion,

72000
100 + 4 a; : 100 : : 720 : rTTTr-r-T—

By uniting these values, we obtain for the equation of the problem,

55000 , 72000 ,^^^
100 + 7 X ^ 100+ 4 X

Dividing each of the members by 200, we have

275 360 _
,+ IfiO -J- Ar "~ " '100+ 7 a;

^ 100 -f 4 x

making the denominators disappear, we find successively,

275 ( 100 + 4 x)+ 360 (100 + 7 cr) iz: 6 (100 + 7 a;) (100 +4 x),

27500 + 1 lOOo? + 36000 + 2520a: = 60000 -f- 6600a? + 168a;2,

which may be reduced to

168 a?2 + 2980 0? = 3500
;

dividing by 2, we obtain

84a?2 + 1490 a; = 1750,

which gives

o ,
1490 _ 1750

^'^ + 84 "^ "" 84
•

Comparing this equation with the formula,

x^ -{- p X =L q,

we have

_ 1490 _ 1750
P — 84 ' ^ — 84 ^

and the expression

-5^*Jf+?.
becomes

745 . 745 . 1750

84 ^ 84 . 84 ' 84

Reducing the fractions, we have

745.745+ 1750,84 _ 70^25
84 . 84

"~ 84 . 84 '

then, since the denominator of this fraction is a perfect square, we

have only to extract the square root of its numerator. If we stop

at thousandths, we find 837,869, for the root of 702025 ; this,

taken with the denominator 84, gives for the values of x

_ 745 837,869 _ 92,869
^~~"84+ 84 "- 84~'
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_ _ 745_ 837,869 _ _ 1582,869^""84 84 ."" 84 •

The first of these values is the only one, which solves the ques-

tion in the sense, in which it was enunciated. Dividing the de-

nominator of this fraction by 12, we have [Arith. 54.)

12. = ^'!^= 13,267;

that is, the annual interest is at the rate of 13,27 nearly.

119. The following question deserves attention on account of

the character, which the expression for the unknown quantity pre-

sents.

To divide a number into two parts^ the squares of which shall be

in a given ratio.

Let a be the given number,

m the ratio of the squares of its two parts,

X one of these parts
;

the other will be 65— x.

We shall then have, according to the enunciation,

(a— X) (a— X)

This may be resolved in two ways ; we may either reduce it to

the form a?2 -j-^? a; = g', and then resolve it by the common
method ; or since the fraction

x^

(a— x) {a— 2;)

is a square, the numerator and denominator being each a square,

we thence conclude at once,

X _
a— X ^

X := ziz (a— x) v/m.

By resolving separately the two equations of the first degree com-

prehended in this formula, namely,

0? = + (^— ^) V^j
X =z — (a — x)\^m,

we have

a -v/m

— a \/m

1— \/m
By the first solution, the second part of the number proposed is

a \/m a -(- a ^yrn — a ^/m a

1 -f- \/m
'^

1 + •v/wT 1 -|- y^m ^
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and the two parts,

and-
1 + ^/m 1 + v/m

'

are both, as the enunciation requires, less than the number pro-

posed.

By the second solution we have

J

a \/m a— a ^m + a ^/w ci

1— \/m 1 — y/m 1 — \/m ^

and the two parts are

a s/m ^ a
and •

1— \/m 1— y/m

Their signs being opposite, the number a is strictly no longer

their sum, but their difference.

If we make m = 1, that is, if we suppose that the squares of

the two parts sought are equal, we have

v^m = 1 ;

and the first solution will give two equal parts,

a a
2' 2'

a conclusion, that is self-evident, while the second solution gives

for the results two infinite quantities (68), namely,

— a — a .a a
or -jr-, and --or;..

1 _ 1
^^

' 1 — 1
"* 0'

This is necessary, for it is only by considering two quantities in-

finitely great, with respect to their difference a, that we can sup-

pose the ratio of their squares equal to unity.

Now, let there be the two quantities a?, and x— a, the ratio of

their squares will be

x^
^

a;2 — 2 a X -j- «2 ^

dividing the two terms of this fraction by o^a, we obtain

1

2« a2 ;

X ~^ x^

but it is evident, that the greater the number a?, the less will be the

fractions — , -j, and the more nearly will the above ratio ap-

proach to :r, or 1.

120. Now in order to compare the general method with that,

which we have just employed, we develope the equation
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= m,
{a— z) (a

—

x)

and we have, successively,

x^ =: m {a— a?) (a— x),

a?2 =: a^ m— 2 amx -{-mx^,

x^ — m x^ -{- 2 a mx =z a^ m,

(1 — m) x^ -}- 2amx =z a^ m,

^ 2 amx a^ m
^'^ + rz:-^ - Tzr^'

, . 2am a^ m
making p = , g = ,° ^ 1— m' * 1

—

m
the general formula gives

a
+ r.

2

m) {i— m) ' 1

—

m'

These values of x appear very different from those, which were

found ahove
;
yet they may be reduced to the same ; and in this

consists the utility of the example, on which 1 am employed. It

will serve to show the importance of those transformations, which

different algebraic operations produce in the expression of quan-

tities.

We must first reduce the two fractions comprehended under the

radical sign to a common denominator. This may be done by

multiplying the two terms of the second by 1 — m ; we have then

a^ m^ a^ m a^ m'^ -\- a"^ m (1— m)

(I — wi) (1 — m) ' 1— m (1 — ^'0 (^ — ^)

a'^ m'^ -{- a^ m— a'^ m^ a"^ m
[i-—m) {i — m) ""

(1 — m) (I — m)*

The denominator being a square, it is only necessary to extract the

root of the numerator ; we then have

(IT^m) (1— m + T^I^ "^ 1—m '

but the expression s/ofm may be further simplified.

It is evident that the square of a product is composed of the

product of the squares of each of its factors, for example,

bed X hcd:=i b^, c^, d^

^

and consequently the root of 6^ c^ d^ is simply the product of the

roots 6, c, and d^ of the factors 6^ c^, and d^. Applying this

principle to the product a^ m, we see that its root is the product of

a, the root of a^, by v^j which denotes the root of w, or that

/^a^ m = a/^m.

Alg. 18
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It follows from these different transformations, that

am
,
« \/~m

X =z — 1 db

or a? =
1— m 1—
am— « \/m

am-{' a ^m
1— m

These expressions, however simple, are still not the same as

those given in the preceding article ; if, moreover, we seek to ver-

ify them for the case, in which w = 1, they hecome

^ — T^ 1 "~ 0'

— 2a
-- 1- 1 - •

We find, in the second, the symbol of infinity, as in the preceding

article, but the first presents this indeterminate form, |, of which

we have already seen examples in articles 69. and 70. ; and before

we pronounce upon its value, it is proper to examine, whether it

does not belong to the case stated in art. 70. ; whether there is not

some factor common to the numerator and denominator, which the

supposition of m = 1 renders equal to zero.

rr,, . — am -X- a s/ra
Ihe expression —1

may be resolved into

a(— w -f- s/m) CL {x/m — m
1 — m 1 — m

It is here evident, that the numerator does not become 0, except

by means of the factor \/m — m; we must therefore examine,

whether this last has not some factor in common with the denomi-

nator 1 — m. In order to avoid the inconvenience arising from

the use of the radical sign, let us make \/m = n, then taking the

squares, we have m = w^ ; the quantities, therefore,

Y/m— m and 1

—

m
become n— n^ and 1 — n^,

hut n~n^ = 71 (l—n), and I — n^ z= (1 — w) (I + w) (34)
^

restoring to the place of n its value V w, we have

\/m— Tn = (I — \^'m) \/m,

I .— m = (1— Vm) (1 + Vw),
and consequently,

a (y/m — m) a (1 — xAn) \/m a y/'m

l—m "~"~
(1— v/m)(l + x/m) '^l+x^'

a result the same, as that found in art. 119.
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In the same manner we may reduce the second value of cc, ob-

serving that

— a y/~m— am — a (1 -}- y/m) \/"m — a \/m

1— m "^
(1 — <y/ m) (1 + V^O

"^
1 — \/^'

as in art. 119.'^

It wili be seen without difficulty, that we might have avoided

radical expressions in the preceding calculations, by taking m^

to represent the ratio, which the squares of the two parts of the

proposed number have to each other ; m would then have been

the square root, which may always be considered as known,

when the square is known ; but we could not have perceived

from the beginning the object of such a change in a given term,

of which algebraists often avail themselves, in order to render

calculations more simple. It is recomniended to the learner,

therefore, to go over the solution again, putting m^ in the place

of m,

Examjples in the Extraction of the Square Roots of Numbers.

1. V4096 = 64.

2. \/63009 = 247.

3. V5b5il69 = 763.

4. V95()484 = 978.

5. V'5719896G = 7563.

6. V/5 = 2.23606 . . .

7. v/i3 = 3.60555 . . .

8. V22 = 4.69041 . . .

9. V153 = 12.36931 . .

10. VTISS = 2.76586 . . .

11. Vl = 1.32287 . . .

* The example, which I have given at some length, corresponds

with a problem resolved by Clairaut, in his Algebra, the enunciation

of which is as follows ; Tofind on the line^ ivhich joins any two lumi^

nous bodies, the point where these two bodies shine loith equal light, I

have divested this problem of the physical circumstances, which are

foreign to the object of this work, and which only divert the atten-

tion from the character of the algebraic expressions. These expres-

sions are very remarkable in themselves, and for this reason I have

developed them more fully, than they were done in the work refer-

red to.
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12. v/TT = 1.24721 . . .

13. v/iTii = 3.41869 ...

14. V| = 1.29099 ... -^

15. vf = 0.93541 ...

Examples in Equations of the Second Degree involving only the

Second Power of the Unknown Quantiiij, and those which may

be solved without completing the Square.

1. 3a;3— 4=28— 0?^ a? = dz 4.

4. 25 (18— a:f
z== IGcr^^s a; = 10.

5i cc^ + dx=z5x+ 4225A a? = dz 65-

4 z^ -

\ z 4 (x— 18)
' ^

Examples in Equations of the Second Degree solved by completing

the Square.

1. cc2 + 6 0? = 27. x=zS, x = — 9.

2. ^9— 7a + 31 = 0. .1 = 6, x=:l.
2. Sx^— 2a?z=65. a? = 5, a? = — 4^.

4. 622 a? = 15 0^2 + 6384. x = 221, x = 18J.

5. Ufa?- 31x2 i=— 411. a? = — 21, a? = 5f
6. a?2— 8a:zz: 14. a? = 4 + V30 = 9.4772 . . . a? = 4

— v50 =— 1.4*72 . . .

7. 118 a:— 2 J-

^2 = 20. a: = 118+ x/i.724 _ 4^ q298 . . .
5

a; = 11^=^^^^=0.1701...
5

8. 6a?— 30 = 3a?2. a? = 1 + v^^j a:=:l— yZTg.

X 7

x -|- 60 3 X — 5 '
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''•^-' = ?.- -=i«. - = -!•

2: -|-3 a: + 10 ^'

12. ^ = — — + 1. a? zz= 671, X =1 4f02; 117— ^2x ' 6' ^

70 — X 2o— <^x 2 3^'

10a:~81 -"52:— 8 ^' ^ — i^^, ^—24 9-

^^'
6 (3— z) - 19— 7

a;~ 4 (3— 2;) • ^ — ^tt 3> ^ - %•

^. a2^2 2«2;
, /2 /2

S^ g g^ ag

17. «6^+^-^ ^ 6.2 + .^>-̂ ._6^.^ , = ?-^^^
' c. c2 c ac '

_ 3 g + 2 6

be*
^o I

^^ / . 7\ o c -f v/(c^ 4- 4a c)

^ ~ 27^74^6 •

19. a^2 4-62 ^c^ _- ^2 +26c + 2(6— cja^Va-

6— c 4- a h— c— a

\r a *^a

Of the Extraction of the Square Root of Algebraic Quantities,

121. We have sufficiently illustrated, by the preceding arti-"

cles, the manner of conducting the solution of literal questions.

We have given also an instance of a transformation, namely,

that of Vo^wi into a vm, which is worthy of particular attention ;

since, by means of it, we have been able to reduce the factors,

contained under a radical sign, to the smallest number possible,

and thus to simplify very much the extraction of the remaining

part of the root.

This transformation consists in taking the roots of all the factors

which are squares^ and writing them without the radical sign, as

multipliers of the radical quantity, and retaining under the radical

sign all those factors, which are not squares.

This rule supposes, that the student is already able to deter-

mine, whether an algebraic quantity is a square, and is acquainted
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with the method of extracting the root of such a quantity. In or-

der to this, it is necessary to distinguish simple quantities from poly-

nomials.

122. It is evident, from the rule given for the exponents in mul-

tiplication, that the second power of any quantity has an exponent

double that of this quantity.

We have, for example,

a^ X a^ = a^, a^ X a^ = a^ a^ X a^ = o^, 8zc.

It follows then, that every factor, which is a square, must have an

exponent which is an even quantity, and that the root of this factor

is found by writing its letter with an exponent equal to half the

original exponent.

Thus we have

y'^ z= a^ or o, \/^'o^=^a^, \/'^ =: a^, ho..

With respect to numerical factors, their roots are extracted,

when they admit of any, by the rules already given.

Whence the factors a^, b^, c^, in the expression

are squares, and the number 64 is the square of 8 ; therefore, as

the expression proposed is the product offactors, which are squares,

it will have for a root the product of the roots of these several

factors (^121) ; and, consequently,

V64a^6^~c^= 8 a^ b^ c.

123. In other cases, different from the above, ive must endeav-

our to resolve the proposed quantity, considered as a product, into

two other products, one of which shall contain only such factors as

are squares, and the other those factors which are not squares.

To effect this, we must consider each of the quantities separately.

Let there be, for example,

\/12~aUF(F.
We see that among the divisors of 72, the following are perfect

squares, namely, 4, 9, and 36 ; if we lake the greatest, we have

72 zi: 36 X 2.

As the factor a^ is a square, we separate it from the others
;

pass-

ing then to the factor b^, wliich is not a square, since 3 is an odd

number, we observe that this factor may be resolved into two oth-

ers, b^ and b, the first of which is a square ; we have then

b^ =zb^ .b'y

it is obvious also that

c^ = c^ . c.
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By proceeding in the san:ie manner with every letter, whose ex-

ponent is an odd number, the quantity is resolved thus,

72aH^c^z=zS6 . 2 aH^ . b c^ . c;

by collecting the factors, which are squares, it becomes

Lastly, taking the root of the first product and indicating that of

the second, we have

See some examples of this kind of reduction, with the steps by

which they are performed
;

\a^ \ „ a \a \a b a

6 I^^^^ a
(2573^12- |25

7 >J 2 " 7 ^J 2 ^

b^,Sa
49 .2

^
(m^ -f- m n) 1= - \/ m^ -j- m n.

It will be seen by the first of these examples, that the denom-

inator of an algebraic fraction may be taken from under the radi-

cal sign by being made a complete square, in the same manner as

we reduce the root of a numerical fraction (104).

124. We now proceed to the extraction ot the square root of

polynomials. It must here be recollected, that no binomial is a

perfect square, because every simple quantity raised to a square

produces only a simple quantity, and the square of a binomial al-

ways contains three parts (34).

It would be a great mistake to suppose the binomial cr + & to be

the square root of a^ -f 6^, although, taken separately, a is the root

of a^^ and b that of 62 • for the square of « + i, or a^ -{- 2 a 6+ ^^>

contains the term -j- 2 a 6, which is not found in the expression

a^ +bK
Let there be the trinomial

24 a^ b^c + 16a^c2 +9b^.
In order to obtain from this expression the three parts, which com-

pose the square of a binomial, we must arrange it with reference to
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one of its letters, the letter a, for example ; it then becomes

16 aU^ +24 nH^c + 9 b^.

Now, whatever be the square root sought, if we suppose it arrang-

ed with reference to the same letter a, the square of its first term

must necessarily form the first term, 16 a^c^, of the proposed

"quantity ; double the product of the first term of the root by the

second must give the second term, 24 a^ P c, of the proposed

quantity ; and the square of the last term of the root must give

exactly the last term, 9 b^, of the proposed quantity. The opera-

tion may be exhibited, as follows
;

16 a^ c2 + 24 a^ b^c + 9bH ia^c + Sh^ root

— 16 a^c^ [sa^c+'Sb^

+ 24a^Pc + 9b^

— 24a^b^c— 9b^

We begin by finding the square root of the first term, 10 a^c^,

and the result 4 a- c (122) is the first term of the root, which is

to be written on the right, upon the same line with the quantity,

whose root is to be extracted.

We subtract from the proposed quantity, the square, 16 a^ c^,

of the first term, 4 a^ c, of the root ; there remain then only the

two terms 24 a^ b^ c + 9 b^.

As the term 24 a^ b^ c is double the product of the first term

of the root, 4 a^ c, by the second, we obtain this last, by dividing

24 a^ b^ c by 8 a^ c, double of 4 a^ c, which is written below the

root ; the quotient 3 b^ is the second term of the root.

The root is now determined ; and, if it be exact, the square of

the second term will be 9 6^, or rather, double of the first term

of the root S a^ c together with the second 3 b^, multi[)lied by the

second, will reproduce the two last terms of the square (91) ;

therefore we write -f- 3 6^ by the side of 8 a^ c, and multiply

8a^ c+ S b^ by SP ; after the product is subtracted from the two

last terms of the quantity proposed, nothing remains ; and we

conclude, that this quantity is the square of 4 a^ c -{- 2 P.

It is evident that the same reasoning and the same process may
be applied to all quantities composed of three terms.

125. When the quantity, whose root is to be extracted, has

more than three terms, it is no longer the square of a binomial

;

but if we suppose it the square of a trinomial, m + ii -+ p, and
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represent by I the sum 77^ + n, this trinomial becoming now Z + p,

its square will be

P + 2lp +p\
in which the square P of the binomial m + w, produces, when

developed, the terms m^ -j"^^^4"^^* Now, after we have

arranged the proposed quantity, the first term will evidently be

the square of the first term of the root, and the second will con-

tain double the product of the first term of the root by the second

of this root ; we shall then obtain this last by dividing the second

term of the proposed quantity by double the root of the first.

Knowing then the two first terms of the root sought, we complete

the square of these two terms, represented here by l^ ; subtract-

ing this square from the proposed quantity, we have for a re-

mainder

2lp+p^
a quantity, which contains double the product of Z, or of the first

binomial m -\- n,hy the remainder of the root, plus the square

of this remainder. It is evident, therefore, that we must proceed

with this binomial as we have done with the first term m of the

root.

Let there be, for example, the quantity

64^2 bc + 25a^ h^— 40 a^b + IGa"^ + 6Ah^ c^ — SO ab^ c;

we arrange it with reference to the letter a, and make the same

disposition of the several parts of the operation as in the above

example.

lGa^—40a%+25a^b^—S0ab^c+64b^c^ f 4a^ — 5ab+Sbc
+G4a^bc

I
Qa^ _ 5^6

—'JGa'^ ^ Sa^ — 10ab+8hc
lsirem,—40a^b+2^a^b^—80abH+64bH^

+64a^bc
+40a%—25a^b^

2d rem -{-G4a^-bc—S0abH+64bH^
—G4a^bc+S0abH—G4bH^

We extract the square root of the first term 16 a^, and obtain

4 a^ for the first term of the root sought, the square of which is

to be subtracted from the proposed quantity.

We double the first term of the root, and write the result, Sa^,

under the root ; dividing by this die term — 40 a^ 6, which be-

gins the first remainder, we have — 5 ab for the second term of

Alg. 19
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the root ; this is to be placed by the side of 8 a^ ; we then multi-

ply the whole by this second term, and subtract the result from the

remainder, upon which we are employed.

Thus we have subtracted from the proposed quantity the square

of the binomial 4 a^ — 5 a & ; the second remainder can contain

only double the product of this binomial, by the third term of the

root, together with the square of this term ; we take then double

the quantity 4 a^ — bab, or

8a^ — 10 a 6,

which is written under 8 a^ — 5 ab, and constitutes the divisor to

be used with the second remainder ; the first term of the quotient,

which is 8 6 c, is the third of the root.

This term we write by the side of 8 a^ — 10 a b, and multiply

the whole expression by it ; the product being subtracted from the

remainder under consideration, nothing is left ; the quantity pro-

posed, therefore, is the square of

4a^ — 5ab + 8bc.

The above operation, which is perfectly analogous to that, which

has been already applied to numbers, may be extended to any

length we please.

Examples in the Abbreviation and Transformation of Radical

Quantities,

1. V24 + \/54— V6 = 4 VO.

2. 2 VH— '7 \/iB + 5 s/72— ^50 = 8 ^2.

3. Vi5 + 2 v57 + 3 v/75— 9 y/iS = — 13 V3.
4. 2VI + V60— Vi5 + V! =ffV15.

3 3 3__ 3 3

5. 7 V54 + 3 V16 + V2— 5 v/128 = 8 v/2.
3_ 3__ _ __ ^3_

6. V81— 2 \/24 + V28 + 2 v63 =: 8 s/7— \/3-

4__ 3_ 4__ 3_
7. v/32 + 2 ^740 = 2 v/2 + 4 v/5.

8. 3 V5— 2 v§ + 3 ve = v/SB— VS + v^54.
3 _ __

^ _ 3 __ 4 _
9. 5 V7 + 3 V2 + 2 v/3 =: V875 + V18 + V48.

5 __ 3 _ 5 3

10. 4vi + 3V2— 5\/i = \/512 + V54— W-
11. V45c3— \/SOc^ + \/5a2'c = (a— c) v^Sc.

12. V18^fe3 4- v/5Cr^ 63 z= (3 a^ J ^ 5 ^ J) V^Tft.
3

^ 3 3

13. v/16a36 + \/4:a^b—\/a^b— \/54.a^b =^ ax/h— av'26.

14 \^ JL !?if \o^cd^ _ {c? ac ad\ I
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3 5 3

15-
J-2F J26=(2«-^)J26-

1 6. 3 6^ V^+ ? VS573- C 1^ = /3«J. + 2a. -|^)v^.

9 3

,« = l«^ , I |6^c3 /5a
,
6c\ 3

17. 5aJ^ + 6j— = (-g- + -)va^6^.

Examples in the Extraction of the Square Root of Algebraic

Expressions.

2. V (a« + 6 a3 a:^ + 9 a;^) = a^ + 3a;^.

5. VC^' +2«^ + 2«<^+ ^^ +2^<^+^^) = « + ^ + ^•

3a?— 5a— ^.

7. V (4a?^+8aa?3 + 4a2 x^+ \^h^ x^ + 16 a 6^ a..]- iGfc^)

= 2a?2 +2aa? + 4j2.

8. v/(f + 6a?— 17a?2 —28 0^3+ 49 a?^) — | + 2a?— 7a?2.

9.
I

Aa?*_3aa?3 + 6Sa?3 +^ — a6aj3 ^ j2 a;2^

10. V (I Ct" ^^
I-
a6 ^3 2: + I ^2 5 ^2 ^2 _^ J2 -p2 ;2;2

— 4a&2 ^;2^ + 4a2 J2 ;s4^_-|^^2_ j^;2: + 2a6 5:^

11. v^(9a2— 6ai + 30ac + 6arf+62_io6c— 26rf

+ 25c2 + 10 06^ + 6^2) _- 3 ^_j^ 5c -j-rf.

Examples in the Extraction of the Square Roots of Incomplete

Squares.

x^ x^ x'^ 5x^
1. \^ (a'— ^=) =<^—^ — §^3 — W3~ iMl' ~ "

2. v(«^+^^)=« + 3^-873+i6^-i28^ +•••
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3. v7l — 0?)

4. vll + ^)

Elements of Algebra,

x^ x^
"~ 8"

~
16

a; x^ r?

1 + o — «- +8 16

5x4

128

128 +

Of the Formation of Powers and the Extraction of their Roots.

126. The arithmetical operation, upon which the resolution of

equations of the second degree depends, and by which we ascend

from the square of a quantity to the quantity, from which it is

derived, or to the square root, is only a 'particular case of a

more general problem, namely, to find a number, any power of

which is known. The investigation of this problem leads to a

result, that is still termed a root, the different kinds being called

degrees ; but the process is to be understood only by a careful ex-

amination of the steps by which a power is obtained, one opera-

tion being the reverse of the other, as we observe with respect to

division and multiplication, with which it will soon be perceived

that this subject has other relations.

It is by multiplication, that v/e arrive at the powers of entire

numbers (24), and it is evident, that those of fractions also are

formed by raising the numerator and denominator to the power

proposed (96).

So also the root of a fraction, of whatever degree, is obtained

by taking the corresponding root of the numerator and that of

the denominator.

As algebraic symbols are of great use in expressing every

thing, which relates to the composition and decomposition of quan-

tities, I shall first consider how the powers of algebraic expressions

are formed, those of numbers being easily found by the methods

that have already been given (24).

Table of the first Seven Powers of JYumbersfrom i to 9.

1st

2d

3

4th

5th

6th

7th

T-

2

4

3

9

4 5 6 7 8 9

16 25 36

216

49 64 81

8

16

32

27

8.

243

64 125 343 512 729

250 625 296 2401 4096 6561

1024

4096

3125 777(j 16807 32768 59049

64

128

729

2187

15625 46650 117649 262144 531441

16384 78125 279936 823543 2097152 4782969
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This table is intended particularly to show with what rapidity

the higher powers of numbers increase, a circumstance that will

be found to be of great importance hereafter ; we see, for in-

stance, that the seventh power of 2 is 128, and that of 9 amounts

to 4782969.

It will hence be readily perceived that the powers of fractions,

properly so called, decrease very rapidly, since the powers of the

denominator become greater and greater in comparison with

those of the numerator. The seventh power of |, for example,

is ylg-j and that of J is only

1^
4782969*

127. It is evident from what has been said, that in a product

each letter has for an exponent the sum of the exponents of its

several factors (26), that the power of a simple quantity is obtain-

ed by multiplying the exponent of each factor by the exponent of

this power.

The third power of a^ P c, for example, is found by multiplying

the exponents 2, 3, and 1, of the letters a, b, and c, by 3, the ex-

ponent of the power required ; we have then a^ b^ c^ ; the opera*

tion may be thus represented,

a^ P c X a^ P c X a^ b^ c =1 a^ '^ P '
^ c^ '^

If the proposed quantity have a numerical coefficient, this co-

efficient must also be raised to the same power ; thus the fourth

power of 3 a 6^ c^ is

81 a^Z^^c^^

128. With respect to the signs, with which simple quantities

may be affected, it must be observed, that every power^ the expo^

nent of which is an even number, has the sign -f-? and every power,

the exponent of which is an odd number, has the same sign as the

quantity from which it is formed.

In fact powers of an even degree arise from the multiplication

of an even number of factors; and the signs — , combined two and

two in the multiplication, ahvays give the sign -|- in the product

(31). On the contrary, if the number of factors is uneven, the

product will have the sign —, when the factors have this sign,

since this product will arise from that of an even number of fac-

tors, multiplied by a negative factor.

129. In order to ascend from the power of a quantity, to the

root from which it is derived, we have only to reverse the rules
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given above, that is, to divide the exponent of each letter by that,

which marks the degree of the root required.

Thus we find the cube root, or the root of the third degree, of

the expression a^ b^ c^, by dividing the exponents 6, 9, and 3, by

3, which gives

a'^Pc.

When the proposed expression has a numerical coefficient, its

root must be taken for the coefficient of the literal quantity, obtain-

ed by the preceding rule.

If it were required, for example, to find the fourth root of

81 a^b^c^^, we see, by referring to the table, art. 126., that 81 is the

fourth power of 3 5 then, dividing the exponent of each of the

letters by 4, we obtain for the result

3 a i^ c^

When the root of the numerical coefficient cannot be found by

the table inserted above, it must be extracted by the methods to be

given hereafter.

130. It is evident, that the roots of the literal part of simple

quantities can be extracted, only when each of the exponents is

divisible by that of the root ; in the contrary case, we can only

indicate the arithmetical operation, which is to be performed

whenever numbers are substituted in the place of the letters.

We use for this purpose the sign v~ ; but to designate the de-

gree of the root, we place the exponent as in the following ex-

pressions,

the first of which represents the cube root, or the root of the

third degree of a, and the second the fifth root of a^.

We may often simplify radical expressions of any degree

whatever, by observing, according to art. 127., that any power

of a product is made up of the product of the same power of each of

the factors, and that, consequently, aiiy root of a product is made

up of the product of the roots of the same degree of the several

factors. It follows from this last principle, tlint, if the quantity

placed under the radical sign have factors, which are exact powers

of the degree denoted by this sign, the roots of these factors may

be taken separately, and their product multiplied by the root of the

other factors indicated by the sign.

Let there be, for example,

\/96a5ft7cii.
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It may be seen that,

96 = 32 X 3 zz::
2' . 3,

that a' is the fifth power of a,

that IP =z h^ . h^,

that cii =^c^' .c;

we have then

96 a^ W c^i = 2^ a^ h^ c^^ x 3 J^ c.

As the first factor, 2^ a^ h^ c^^ has for its fifth root the quantity

2 abc^, the expression becomes

5 5

vma^ bUn =z2abc^^3b^ c
131. As every even power has the sign + (128), a quantity,

aflfecterl with the sign — , cannot be a power of a degree denoted

by an even number, and it can have no root of this degree. It

follows from this, that every radical expression of a degree which

is denoted by an even number, and which involves a negative quan-

tity, is imaginary, thus

4 6 8

V

—

a, V— aS ^ + V— « ^^)

are imaginary expressions.

We cannot, therefore, either exactly or by approximation, as-

sign for a degree, the exponent of which is an even number, any

roots but those of positive quantities, and these roots may be affect-

ed indifferently with the sign -\- or—, because, in either case,

they will equally reproduce the proposed quantity with the sign -\-,

and we do not know to which class they belong.

The same cannot be said of degrees expressed by an odd num-

ber, for here the powers have the same sign as their roots (128)

;

and we must give to the roots of these degrees the sign, with which

the power is affected; and no imaginary expressions occur.

132. It is proper to observe, that the application of the rule

given in art. 129., for the extraction of the roots of simple quan-

tities, by means of the exponent of their factors, leads to a more

convenient method of indicating roots, which cannot be obtained

algebraically, than by the sign >/.

If it were required, for example, to find the third root of a^, it

is necessary, according to the rule given above, to divide the ex-

ponent 5 by 3 ; but as we cannot perform the division, we have

for the quotient the fractional number | ; and this form of the ex-

ponent indicates, that the extraction of the root is not possible in

the actual state of the quantity proposed. We may, therefore,

consider the two expressions
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3 _ 5

\/a^ and a^

as equivalent.

The second, however, has this advantage over the first, that it

3

leads directly to a more simple form, which the quantity \/ aS is ca-

pable of assuming ; for if we take the whole number contained in

the fraction f , we have 1 + | as an equivalent exponent ; conse-

quently,

5 2

a^ =:a^+^=ia} X «^ (25);
5

from which it is evident, that the quantity a^ is composed of two

3

factors, the first of which is rational, and the other becomes \/a^»

The same result, indeed, may be obtained from the quantity

3_
under the form \^a^, by the rule given in art. 130., but the frac-

tional exponent suggests it immediately. We shall have occasion

to notice in other operations the advantages of fractional expo-

nents.

We will merely observe for the present, that as the division of

exponents, when it can be performed, answers to the extraction of

roots, the indication of this division under the form of a fraction

is to be regarded as the symbol of the same operation ; whence,
n m
\/a^ and an

are equivalent expressions.

We have rules then, which result from the assumed manner of

expressing powers, which lead to particular symbols, as, in art. 37.,

we arrived at the expression a^ =: 1,

133. It may be observed here, that as we divide one power by

another, by subtracting the exponent of the latter from that of the

former (36), fractions of a particular description may readily be

reduced to new forms.

By applying the rule above referred to, we have

^m—n •

«^ ^

but if the exponent n of the denominator exceed the exponent m
of the numerator, the exponent of the letter a in the second mem-

ber will be negative.

If, for example, m = 2,n=z2, we have
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but by another method ot simphfying the fraction -3 , we find it is

equal to -, the expressions

- and a~^,
a

are therefore equivalent.

In general, we obtain by the rule for the exponents,

r,m—m—n — /y—

«

and by another method
g^ _ 1

^

it follows from this, that the expressions

— and a""*,

are equivalent.

In fact, the sign —, which precedes the exponent n, being

taken in the sense defined in art. 62., shows that the exponent in

question arises from a fraction, the denominator of which contains

the factor a, n times more than the numerator, which fraction is

indeed — ; we may, therefore, in any case which occurs, substi-

tute one of these expressions for the other.

The quantity -3—13, for example, being considered as equiva-

lent to

«'^'^ 0^x55'

may be reduced to the following form,

that is, we may transfer to the numerator all the factors of the de-

nominator, by giving to their exponents the sign —

.

Reciprocally, when a quantity contains factors, which have nega-

tive exponents, we may convert them into a denominator, observing

merely to give to their exponents the sign -{- ; thus the quantity

a^ b^ c-^ d-^
becomes

Of the Formation of the Powers of Compound Quantities.

134. We shall begin this section by observing, that the powers

of compound quantities are denoted by including these quantities

Ak. 20
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in a parenthesis, to which is annexed the exponent of the power.

The expression

for example, denotes the third power of the quantity,

4a^— 2ab + 5 b^.

This power may also be expressed thus,

4:a^--2ab~+5¥ ^.

135. Binomials next to simple quantities are the least compli-

cated, yet if we undertake to form powers of these by successive

muhiplications, we in this way arrive only at particular results, as,

in art. 34., we obtained the second and third power ; thus

(x + af=zx^ + 2ax + a%

{x 4- a)^ = a^ + 3 a 0?^ + 3 a^ x -j- a^,

{x + ay =2 x"^ + 4 ax^ + G a^ x^ + 4 a^ X + a\

&c.

It is not easy from this table to fix upon the law, which deter-

mines the value of the numerical coefficients. But by consider-

ing how the terms are multiphed into each other, we perceive,

that the coefficients have their origin in reductions depending on

the equality of the factors, which form a power. This is render-

ed very evident by an arrangement, which prevents these reduc-

tions from taking place.

It is sufficient for this purpose to give to the several binomials to

be multiplied different second terms. If we take, for example,

0? -}- a, X -{- b, X -}- c, X -{- d, he.

by performing the multiplications indicated below, and placing in

the same column the terms, which involve the same power of x,

we shall immediately find, that

{x + a) {x -{-b) =zx^ + ax + ab

+ bx

{x-\' a) {x -{-b (x -{- c) =:x^ -\- ax-^ + abx + cibc

4" ^^^ + ^^^

-{- cx^ -j- bcx

{x-\'a) {x-\-b) (x + c{x -{- d) = ^^ + ax^ -f- abx^
-f- abcx-{-abcd

+ bx^-\- acx^ + abdx

-f- cx^ + ^^^^ + (^c<^^

-{- dx^ + bcx^ -j- ^^dx

-\-bdx^
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Without carrying these products any further, we may discover

the law according to which they are formed.

By supposing all the terms involving the same power of a?,

and placed in the same column, to form only one, as, for ex-

ample,

he.

(1.) We find in each product one term more than there are units

in the number offactors.

(2.) The exponent ofx in the first term is the same as the num-

ber offactors J
and goes on decreasing by unity in each of thefoU

lowing terms.

(3.) The greatest power of x has unity for its coefficient ; the

following, or that, whose exponent is one less, is multiplied by the

sum of the second terms of the binomials ; that, whose exponent is

two less, is multiplied by the sum of the different products of the

second terms of the binomials taken two and two ; that whose ex-

ponent is three less, is multiplied by the sum of the different pro-

ducts of the second term of the binomials, taken three and three,

and so on ; in the last term, the exponent of x, being considered

as zero (37), is equal to that of the first diminished by as many

units as there are factors employed, and this term contains the product

of all the second terms of the binomials.

It is manifest, that the form of these products must be subject

to the same laws, whatever be the number of factors ; as may be

shown by other evidence beside that from analogy.

136. It will be seen immediately, that the products, of which

we are speaking, must contain the successive powers of x, from

that, whose exponent is equal to the number of factors employed,

to that, whose exponent is zero. To present this proposition under

a general form, we shall express the number of factors by the let-

ter m ) the successive powers of x will then be denoted by

X^, ^771-1^ ^m-^^ ^^^

We shall employ the letters A, B, C, Y,

to express the quantities, by which these powers, beginning with

x^"^^, are to be multiplied ; but as the number of terms, which de-

pends on the particular value given to the exponent, will remain in-

determinate, so long as this exponent has no particular value, we

can write only the first and last terms of the expression, designat-

ing the intermediate terms by a series of points.
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The formula then

00"^ + Ax'^-^+ Bx'^-^+ Cx'^-'^ + r,

represents the product of any number m of factors,

X -\- a, X -{- b^ X -\- c^ X -{- dj &;c.

If we multiply this by a new factor a? + Z, it becomes
a^m-l ^ Jlr^ra j^ B X^-^ + C x"^-^ . . . .

+ Ix"^ '^-lAx'^-^ + lBx'^-^. , . , + IY
It is evident, 1. that if Jl is the sum of the m second terms

a, 6, c, rf, &;c. A-{' I will be that of the m + 1 second terms

a, 5, c, rf, &£c. /, and that consequently the expression employed

to denote the coefficient will be true for the product of the degree

t» + 1, if it is true for that of the degree m»

2. IfB is the sum of the products of the m quantities «, 6, c, </,

&c. taken two and two, B -{- I A will express that of the products

of the w -|- 1 quantities «, J, c, d, he. I, taken also two and two ;

for A being the sum of the first, IA will be that of their products

by the new quantity introduced I; therefore the expression em-

ployed will be true for the degree m -f- ] , if it is for the degree m.

If C is the sum of the products of the m quantities a, b, c, dj

&c. taken three and three, C -\- IB will be that of the products

of the m + 1 quantities a, b, c, d, he. I, taken also three and three,

since I By from what has been said, will express the sum of the

products of the first taken two and two, multiplied by the new
quantity introduced I ; therefore, the expression employed will be

true for the degree ?/z + 1, if it is true for the degree m.

It will be seen, that this mode of reasoning may be extended to

all the terms, and that the last, I Y, will be the product of m + 1

second terms.

The propositions laid down in art. 135., being true for expres-

sions of the fourth degree, for example, will be so, according to

what has just been proved, for those of the fifth, for those of the

sixth, and, being extended thus from one degree to another, they

may be shown to be true generally.

It follows from this, that the product of any number whatever

wi, of binomial factors x + a, x + b, x -}- c, x '\- d, he. being

represented by

x"^ + A x"^^ + B x"^-^ + Cx"^-^ -f. he.

A will always be the sura of the m letters a, J, c, Sic, B that of

the products of these quantities, taken two and two, C that of the

producjts of the quantities, taken three and three, and so on.
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To comprehend the law of this expression in a single term, I take

one, whose place is indeterminate, and which may be represented

by JVx'"-'',

This term will be the second, if we make n =i 1, the third,

if we make n :=. 2, the eleventh, if we make n =: 10, &:c. In the

first case, the letter JV will be the sum of the m letters a, b, c,

&:c. in the second, that of their products, when taken two and two;

in the third, that of their products, when taken ten and ten ; and in

general, that of their products, taken n and n.

137. To change the products

(a? + a) {x + b), {x + a) (x + b) {x + c),

Ix + a) {x + b) {x + c) {x + d), &ic.

into powers of a? + a, namely, into

{x -j- ciY {x 4- «)^j

[x + «)S &;c.

it is only necessary to make, in the developement of these products,

a =: b, a ::^b :=. C,

a =z b =2 c :=! d, he.

All the quantities, by- which the same power of x is multiplied,

become in this case equal ; thus the coefficient of the second term,

which in the product

(x -\- a) {x + b) [x -f c) (a? -[- ri) is a + 6 + c + d,

is changed into 4 a ; that of the third term in the same product,

which is,

aS + ac-f-arf + ic + i^ + ^^j

becomes 6 a^. Hence it is easy to see, that the coefficients of

the different powers of x will be changed into a single power of a,

repeated as many times as there are terms, and distinguished by

the number of factors contained in each of these terms. Thus,

the coefficient JV, by which the power a?^-" is multiplied, will, in

the general developement, be that power of a denoted by n, or a%

repeated as many times, as we can form different products by

taking in every possible way a number n of letters from among a

number m 5 to find the coefficient of the term containing x^~'^ then

is reduced to finding the number of these products.

138. In order to perform the problem just mentioned, it is

necessary to distinguish arrangements or permutations from pro-

ducts or combinations. Two letters, a and b, give only one pro-

duct, but admit of two arrangements, a b and b a ; three letters,

a, 6, c, which give only one product, admit of six arrangements

(88), and so on.
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To take a particular case, I will suppose the whole number of

letters to be nine, namely,

a, b, c, d, e, /, g, h, i,

and that it is required to arrange them in sets of seven. It is

evident, that if we take any arrangement we please, of six of

these letters, abcdef, for example, we may join successively to

it each of the three remaining letters, g, A, and i ; we shall then

have three arrangements of seven letters, namely,

abed efg, abed efh, ab c d efi.

What has been said of a particular arrangement of six letters,

is equally true of all ; we conclude, therefore, that each arrange-

ment of six letters will give three of seven, that is, as many as

there remain letters, which are not employed. If, therefore, the

number of arrangements of six letters be represented by P, we

shall obtain the number consisting of seven letters by multiplying

P by 3 or 9 — 6. Representing the numbers 9 and 7 by m and

«, and regarding P as expressing the number of arrangements,

which can be furnished by m. letters, taken n— 1 at a time, the

same reasoning may be employed ; we shall thus have for the

number of arrangements of n letters,

P {m—{n— l)), or P {m— n+l).
This formula comprehends all the particular cases, that can

occur in any question. To find, for example, the number of

arrangements, that can be formed out of m letters, taken two and

two, or two at a time, we make n =: 2, which gives

n— 1 = 1
;

we have then

Pizz m;
for P will in this case be equal to the number of letters taken one

at a time ; there results then from this

m [m— 2 -|- l), or m(m— 1),

for the number of arrangements taken two and two.

Again, taking

P=zm{m— 1) and n = 3,

we find for the number of arrangements, which m letters admit of,

taken three and three,

m (m— 1) {m—S+l)=zm{m— 1) {m— 2).

Making

P=::m{m— I) {m— 2) and n = 4,
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we obtain

m [m— 1 (m— 2) (m— 3)

for the number of arrangements taken four and four. We may

thus determine the number of arrangements, which may be formed

from any number whatever of letters."^

139. Passing now from the number of arrangements of n let-

ters, to that of their different products, we must find the number

of arrangements, which the same product admits of. In order to

this, it may be observed, that if in any of these arrangements, we

put one of the letters in the f^rst place, we may form of all the

others as many permutations, as the product of n— 1 letters

admits of. Let us take, for example, the product abed cfg,
composed of seven letters ; we may, by putting a in the first place,

write this product in as many ways, as there are arrangements in

the product of six letters bed efg ; but each letter of the pro-

posed product may be placed first. Designating then the number

of arrangements, of which a product of six letters is susceptible,

by Qi we shall have ^ X '7 for that of the arrangements of a

product of seven letters. It follows from this, that if Q designate

the number of arrangements, which may be formed frorn a product

of n— 1 letters, Q n will express the number of arrangements of

a product of n letters.

* In these arrangements it is supposed by the nature of the inquiry,

that there are no repetitions of the same letter ; but the theory of

permutations and combinations, which is the foundation of the doc-

trine of chances, embraces questions in which they occur. The effect

may be seen in the example we have selected, by observing, that we

may write indifferently each of the 9 letters a, b, c, d,^e,f, g, A, 2, after

the product of 6 letters ab cdc f. Designating, therefore, the num-

ber of arrangements, taken six at a time, by P, we shall have P X 9

for the number of arrangements, taken 7 at a time. For the same

reason, if P denote the number of arrangements of m letters, taken

n— 1 at a time, that of their arrangements, when taken w at a time,

will be P m.

This being admitted, as the number of arrangements of m letters,

taken one at a time, is evidently m, the number of arrangements,

when taken 2 and 2, will be m X ^j or m^, when taken 3 and 3, the

number will be m y, m y, m, or m^ ; and lastly, rri^ will express the

number of arrangements, when they are taken n and w.
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Any particular case is readily reduced to this formula ; for making

n = 2, and observing, that when there is only'^one letter, Q ==: 1,

we have 1 X 2 z=: 2 for the number of arrangements of a product of

two letters. Again, taking Q, := 1 X 2 and n = 3, we have

] X 2 X 3 = 6 for the number of arrangements of a product of

three letters ; further, making Q =z 1 X 2 X 3 and n =: 4, there

result 1 X 2 X 3x 4, or 24 possible arrangements in a product

of four letters, and so on.

140. What we have nov¥ said being well understood, it will

be perceived, that by dividing the whole number of arrange-

ments obtained from m letters, taken ri at a time, by the number

of arrangements of which the same product is susceptible, we

have for a quotient the number of the different products, which

are formed by taking in all possible ways n factors among

these m letters. This number will, therefore, be expressed by

—^^—7^^
—Jl-J.-J^- which beini>: considered in connexion with

what was laid down in art. 137., will give — o a^ x'^~^

for the term containing a;"""" in the developement of {x -f- a)'^.

It is evident, that the term which precedes this will be ex-

p
pressed by— a"~^ ^m—n+i

. f^j, ^^ going back towards the first

term, the exponent of x is increased by unity, and that of a

diminished by unity; moreover, P and Q are the quantities,

which belong to the number n—1,
P

141. If we make -^ = M, the two successive terms indicated

above, become

M a"^^ x'^-n+i and JIfl^Il^-i) ^^ a;^-^.
n

* It may be observed, that if we make successively

n=z2, w =: 3, n = 4, &c.

, P (m— n4-l)^
the formula —^^

—

—^ becomes
Qn

m{m— 1) m{m— 1) {m—-2) m {m— 1) (m— 2
) (m—3) ^

"TT 2~'
172 . 3 " ' 1 . 2T3T4 '

^'

numbers, which express respectively, how many combinations may

be made of any number m of things, taken two and two, three and

three, four and four, &/C.
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These results show how each term in the developement of {x -j- a)"*,

is formed from the preceding.

Setting out from the first term, which is x^'\ we arrive at the

second, by making n =: i * we hav-e J)/= 1, since o;"^ has only

1 X ^^i

unity for its coefficient; the result then is —j— ax'^~'^^ or

~ax'^'~^. In order to pass to the third term, we makeJizi:-,

and n rz 2, and we obtain —^-

—

^
—- a^ ^"^~^. The fourth is

found by supposing M = ———^

—

~, and n = 3, which gives

—^—-

—

i-^ cfi <2?^~^, and so on ; whence we have the for-

mula

which may be converted into this rule.

To pass from one term to the following^ we multiply the numerical

coefficient by the exponent of x in the first, divide by the number

which 7narks the place of this term, increase by unity the exponent of
a, and diminish by unity the exponent ofx.

Although we cannot determine the number of terms of this

formula without assigning a particular value to m
',

yet, if we
observe the dependence of the terms upon each other, we can

have no doubt respecting the law of their formation, to whatever

extent the series may be carried. It will be seen, that

mim, — l)(?n— 2) . . . . (?/2— w + 1) ^

1 , 2 . J . . . . n

expresses the term, which has n terms before it.

This last formula is called the general term of the series

?n ('«-!).
^- 4-

'"
a x"^' + -l^J^^a^ x»'-2+ &c.

1 I , z

because if we make successively

w 1= 1, n =:2, 71 = 3, &ic.

it gives all the terms of this series.

142. Now, if {x + ay be developed, according to the rule

given in the preceding article ', the first term being

x^ or aV (37),

Al§. 21
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the second will be

the third

the fourth

the fifth

the sixth

5
jo} a?* or 5 a x^,

5-^a2«3 oj. iOa«a»,

12><ia3a;2 or 10 a^ x^

10 X 2 . ^4— a^x or 6a^^,
4

^ X 1 5—p— a^ x^ or
o

Here the process terminates, because in passing to the following

term it would be necessary to multiply by the exponent of x in the

sixth, which is zero.

This may be shown by the formula ; for the seventh term,

having for a numerical coefficient

mim— l) (m--2) (m— 3) (y?^— 4) (m— 5)

1 .2.3.4 .5.6
contams the factor m— 5, which becomes 5— 5 = 0; and this

same factor entering into each of the subsequent terms, reduces it

to nothing.

Uniting the terms obtained above, we have

{x + aY — x^ + 5ax^ + 10 a^ x^ + 10 a^o(r^ + 5a^ x + a^.

143. Any power whatever of any binomial may be developed

by the formula given in art. 141. If it were required for example

to form the sixth power oi2a?— 5 a^ we have only to substitute

in the formula the powers of 2 x^ and— 5 a^ respectively for those

of X and a ; since, if we make

2 o;^ =: a;' and— 5 a^ = a',

we have

(2 «3_ 5 a^Y = (^ + a'f =
x'^ + 6a' x"^ + 15a'2^4 + 20a'^x'^

+ I5a''^x/^ + 6a'^x' + a'^ (141),

and it is only necessary to substitute for a/ and a' the quantities,

which thesB letters designate. We have then
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(2 x^ + 6 (— 5 a') (2 x^ + 15—5 a^f (2 a?^)*

-j- 20 (— 5 a^ (2 0^3)3 +15—5 a^y (2 0^3)2

-[. 6 (— 5 aY h ^ ) + (— ^ «^)^

or

64 a?is— 960 a^ x^^ + 6000 a^ x^
— 20000 a® a?9 + 37500 a}^ x^

— 37500 a}^ x^ + 15625 q}^

The terms produced by this developement are alternately positive

and negative ; and it is manifest, that they will always be so, when

the second term of the proposed binomial has the sign —

.

144. The formula given in art. 141, may be so expressed as to

facilitate the application of it in cases analogous to the preceding.

Since
qrVl j-m /vWl

the formula may be written

• 1 a;
• 1.2 x^

'

which may be reduced to

C m 6^ m(m-l) a3 7/. (m- 1) (m-2) a3
j^ r + lx+ 1.2 x2^ 1.2.3 x3^^^-5'

by insulating the common factor a?**. In applying this formula,

the several steps are, to form the series of numbers,

m m— 1 m— 2 m— 3 «

1' "2~' ""r"' " 4
'^^•

to multiply the first by the fraction -, then thisproduct by the second

and also by the fraction -, then again this last result by the

third and by the fraction -, and so on ; to unite all these termsy

and add unity to the sum ; and lastly, to multiply the whole by the

factor x^.

In the example (2 a;^— 5 a^f, we must write (2 x^ in the

5 ^3 a
place of cT*^, and — .y-g in that of -. I shall leave the application

of the formula as an exercise for the learner.f

t The formula for the developement of {x + a)^ answers for all

values of the exponent m, and is equally applicable to cases in which



164 Elements ofMgehra,

145. We may easily reduce the developement of the power of

any polynomial whatever, to that of the powers of a binomial, as

may be shown with respect to the trinomial a + 6 +• c, the third

power for instance being required.

First, we make b -\- c ^=- m, we then obtain

(a -f- 6 -f- c)^ = {ci + mY = «^ -|~ ^ ^^ ^^ + 3 « m^ -\- m^

;

substituting for m the binomial ^ + c, which it represents, we have

(^a + b + c)^ =a^ + 3a^- {b + c) + Sa{b + cy + {b + c)\

It only remains for us to develope the powers of the binomial

b -j- c, and to perform the multiplications, which are indicated

;

we have then

«3 ^Sa^b + Sab^ +b^
+ 3a^ c+6abc+3b^ c

+ Sac^ +Sbc^
+ c\

Of the Extraction of the Roots of Compoujid (Quantities,

146. Having explained the fornnation of the powers of com-

pound quantities, I now pass to the extraction of their roots, be-

ginning with the cube root of numbers.

In order to extract the cube root of numbers, we must first be-

come acquainted with the cubes of numbers, consisting of only

one figure ; these are given in the second line of the following

table

;

J 23456789
1 8 27 64 125 216 343 512 729

and the cube of 10 being 1000, no number consisting of three fig-

ures can contain the cube of a number consisting of more than one.

The cube of a number consisting of two figures is formed in a

manner analogous to that, by which we arrive at the square ; for

if we resolve this number into tens and units, designating the first

by a, and the second by 6, we have

[a + by =1 a^ + ^ a^ b + ^ ab'- 4-S^

the exponent is fractional or negative. This property, which is

very important, is demonstrated in a note to the last part of the

Cambridge course of Mathematics on the Differential and Integral

Calculus.
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Hence it is evident, that the cube, or third power, of a number com-

posed of tens and units, contains four parts, namely, the cidje of the

tens, three times the square of the tens multiplied hy the units, three

times the tens multiplied by the square of the units, and the cube of

the 21 nits.

If It were required to fir,d the third power of 47, by making

a :=. 4 tens or 40, b = 7 units, we have

a^ =z 64000

Sa^ b =z 33600

3ab' =z 5880

b^- = 343

Total, 103823 = 47 X 47 X 47.

Now to go back from the cube 103823 to its root 47, we begin

by observing that 64000, the cube of the 4 tens, contains no sig-

nificant figure inferior to thousands ; in seeking the cube of the tens

therefore, we may neglect the hundreds, the tens, and the units of

the number 103823. Pursuing, therefore, a method similar to that

employed in extracting the square root, we separate, by a comma,

the first three figures on the right y the greatest cube contained

in 103 will be the cube of the tens. It is evi- 103,82c

dent from the table, that this cube is 64, the 64
47

48

root of which is 4 ; we therefore put 4 in the 398,23

place assigned for the root. We then subtract 64 from 103 •

and by the side of the remainder, 39, bring down the last three

figures. The whole remainder, 398.23, contains still three parts

of the cube, namely, three times the square of the tens multiplied

by the units, or Sa-b, three times the tens multiplied by the

square of the units, or 3 ab^, and the cube of the units, or b^. If

the value of the product 2 a^ b were known, we might obtain the

units b, by dividing this product by 3 a^, which is a known quan-

tity, the tens being now found ; but, on the supposition that the

product, 3 a^b, is unknown, we readily perceive, that it can have

no figure inferior to hundreds, since it contains the factor a^, which

represents the square of the tens ; it must, therefore, be found in

the part 398, which remains on the left of the number 39823,

after the tens and units have been separated, and which contains,

besides this product, the hundreds arising from the product, Sab^^

of the tens by the square of the units, and from the cube b^, of

the units.
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If we divide 398 by 485 which is triple the square of the tens,

2a^ or 3 X 16, we obtain 8 for the quotient; but from what pre-

cedes, it appears that we ought not to adopt this figure for the

units of the root sought, until we have made trial of it, by em-

ploying it in forming the last three parts of the cube, which must

be contained in the remainder 39823. Making h =zS, we find

3 ^2 5 ~ 38400

Sab^ =z 7680

b^ =z 512

Total, 46592.

As this result exceeds 39823, it is evident that the number 8 is too

great for the units of the root. If we make a similar trial with 7,

we find that it answers to the above conditions ; 47 therefore is the

root sought.

Instead of verifying the last figure of the root in the manner

above described, we may raise the whole number expressed by

the two figures, immediately to a cube , and this last method is

generally preferred to the other. Taking the number 48 and

proceeding thus, we find

48 X 48 X 48 = 110592.

As the result is greater than the proposed number, it is evident;

that the figure 8 is too large.

147. What we have laid down in the above example may be

applied to all cases, where the proposed number consists of more

than three figures and less than seven. Having separated the

first three figures on the right, we seek the greatest cube in the

part which remains on the left, and write its root in the usual

place ; we subtract this cube from the number to which it relates,

and to the remainder bring down the last three figures ; sepa-

rating now the tens and the units, we proceed to divide what

remains on the left, by three times the square of the tens found ;

but before writing down the quotient as a part of the root, we

verify it by raising to the cube the number consisting of the tens

known, together with this figure under trial. If the result of

this operation is too great, the figure for the units is to be dimin-

ished ; we then proceed in the same manner with a less figure,

and so on, until a root is found, the cube of which is equal to the

proposed number, or is the greatest contained in this number, if

it does not admit of an exact root. As we have often remainders

that are very considerable, I will here add to what has been said, a
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method, by which it may be soon discovered, whether or not the

unit figure of the root be too small.

The cube of a + 6, when 6 =: 1, becomes that of a -|- 1,

or a^ -{- o a^ -{- ^a -\- I,

a quantity, which exceeds a^, the cube of a, by

3a- +Sa + 1.

Hence it follows, that whenever the remainder, after the cube root

has been extracted, is less than three times the square of the root,

plus three times the root, plus unity, this root is not too small.

148. In order to extract the root of 105823817, it may be ob-

served, that whatever be the number of figures in this root, if we

resolve it into units and tens, the cube of the tens cannot enter into

the last three figures on the right, and must consequently be found

in 105823. But the greatest cube contained in 105823 must have

more than one figure for its root ; this root then may be resolved

into units and tens, and, as the cube of the tens has no figure infe-

rior to thousands, it cannot enter into the three last figures 823.

If, after these are separated, there remain more than three figures

on the left, we may repeat the reasoning just employed, and thus,

dividing the number proposed into portions of three figures each,

proceeding from right to left, and observing that the last portion

may contain less than three figures, we come at length to the place

occupied by the cube of the units of the highest order in the root

sought.

Having thus taken the preparatory steps, we seek, by the rule

given in the preceding article, the cube root of the two first por-

tions on the left, and find for the result 47

;

we subtract the cube of this number from the

two first portions, and to the remainder 2000

bring down the following portion 817. The

number 2000817 will then contain the last 2~6008~r7'

three parts of the cube of a number, the tens of 105 823 817

which are 47, and the units remain to be found. 000 000 000

These units are therefore obtained as in the example given in

the preceding article, by separating the last two figures on the

right of the remainder, and dividing the part on the left by 6627,

triple the square of 47. Then making trial with the quotient 3,

arising from this division, by raising 473 to a cube, we obtain for

the result the proposed number, since this number is a perfect

cube.

105,823,817 473

61 48

41 8,23

103 823

6627
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The explanation, we have given, of the above example, may
take the place of a general rule. If the number proposed had

contained another portion, we should have continued the operation,

as we have done for the third ; and it is to be recollected always,

that a cipher must be placed in the root, if the number to be divided

on the left of the remainder happen not to contain the number used

as a divisor ; we should then bring down the following portion, and

proceed with it as with the preceding.

149. Since the cube of a fraction is found by muliiplying this

fraction by its square, or which amounts to the same thing, by taking

the cube of the numerator and that of the denominator ; reversing

this process, we arrive at the root, by extracting the root of the new

numerator and that of the new denominator. The cube of f , for

example, is ^f-f ; taking the cube root of 125 and of 216, we

find f .

We always proceed in this way, when the numerator and denom-

inator are perfect cubes ; but when this is not the case, we may

avoid the necessity of extracting the root of the denominator, by

multiplying the two terms of the proposed fraction by the square of

this denominator. The denominator thence arising, will be the

cube of the original denominator ; and it will be only necessary

then to find the root of the numerator. If we have, for example,

I, by multiplying the two terms of this fraction by 25, the square of

the denominator, we obtain

75

The root of the denominator is 5 ; while that of 75 lies between

4 and 5. Adopting 4, we have | for the cube root of f to within

one fifth. If a greater degree of accuracy be required, we must

take the approximate root of 75, by the method 1 shall soon pro-

ceed to explain.

If the denominator be already a perfect square, it will only be

necessary to multiply the two terms of the fraction by the square

root of this denominator. Thus in order to find the cube root of f

,

we multiply the two terms by 3, the square root of 9 ; we thus

obtain

12

3X3X3'
Taking the root of the greatest cube 8, contained in 12, we

have I for the root sought, within one third.
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1 50. It follows from what has been demonstrated in art. 97.,

that the cube root of a number, which is not a perfect cube, cannot

be expressed exactly by any fraction however great may be the

denominator ; it is therefore an irrational quantity, though not of the

same kind with the square root ; for it is very seldom that one of

them can be expressed by means of the other.

151. We may obtain the approximate cube root by mea s of

vulgar fractions. The mode of proceeding is analogous to that

given for finding the square root (103) ; but, as it may be readily

conceived, and is besides not the most eh'gible, I shall not stop to

explain it.

A better method of employing vulgar fractions for this purpose

consists in extracting the root in fractions of a given kind. Thus,

if it were required to find, for example, the cube root of 22, within

a fifth part of unity, observing that the cube of i is y^j, we reduce

22 to W/ 5 ^h^" taking the root of 2750, so far as it can be

expressed in whole numbers, we have y, or 2|, for the approximate

root of 22.

152. It is the practice of most persons, however, in extracting

the cube root of a number, by approximation, to convert this

number into a decimal fraction, but it is to be observed, that this

fraction must be either thousandtlis or millionths, or of some higher

denomination ; because when raised to the third power, tenths

become thousandths, and thousandths millionths, and in general,

the number of decimal figures found in the cube, is triple the number

contained in the root. From this it is evident, that we must place

after the proposed number three times as many ciphers, as there

are decimal places required in the root. The root is then to be

extracted according to the rules already given, and the requisite

number of decimal figures to be distinguished in the result.

If we would find, for example, the cube root of 327, within a

hundredth part of unity, we must write six ciphers after this number,

and extract the root of 327000000 according to the usual method.

This is done in the following manner

;

327,000,000 688

216 108

1110,00
3144 32

13872

125 680,00

325 660 672

I 339 328

. Alg. 22
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Separating two figures on the right of the result for decimals,

we have 6,88 ; but 6,89 would be more exact, because the cube of

this last number, although greater than 327, approaches itmore

nearly than that of 6,88.

If the proposed number contain decimals already, before we

proceed to extract the root, we must place on the right as many

ciphers, as will be necessary to render the number of decimal

figures a multiple of 3. Let there be, for example, 0,07, we

must write 0,070, or 70 thousandths, which gives for a root 0,4.

In order to arrive at a root exact to hundredths, we must annex

three additional ciphers, which gives 0,070000. The root of the

greatest cube contained in 70000 being 41, that of 0,07 becomes

0,41, to within a hundredth.

153. Hitherto I have employed the formula for binomial quan-

tities only in the extraction of the square and cube roots of num-

bers ; this formula leads to an analogous process for obtaining

the root of any degree whatever. I shall proceed to explain this

process, after offering some remarks upon the extraction of roots,

the exponent of which is a divisible number.

We may find the fourth root by extracting the square root twice

successively ; for by taking first the square root of a fourth power,

a^ for example, we obtain the square, or a^, the square root of

which is a, or the quantity sought.

It is obvious also, that the eighth root may be obtained by

extracting the square root three times successively, since the

square root of a® is a\ and that of a"^ is a^, and lastly, that of

a^ is a.

In the same manner it may be shown, that all roots of a degree,

designated by any of the numbers 2, 4, 8, 16, 32, he. that is, by

any power of 2, are obtained by successively extracting the square

root.

Roots, the exponents of which are not prime numbers, may be

reduced to others of a degree less elevated ; the sixth root, for

example, may be found by extracting the square and afterwards

the cube, root. Thus, if we take a^ and go through this process

with it, we find by the first step a^, and by the second a ; we may
also take first the cube root, which gives a^, and afterwards the

square root, whence we have a, as before.

154. I now proceed to treat of the general method, which I

shall apply to roots of the fifth degree. The illustration will be
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rendered more easy, if we take a particular example ; and by-

comparing the different steps with the methods given, for the

extraction of the square and the cube root, we shall readily per-

ceive, in what manner we are to proceed in finding roots of any

degree whatever.

Let it be required then to extract the fifth root of 231554007.

Now the least number, it may be observed, consisting of 2 figures,

that is 10, has in its fifth power, which is 100000, six figures 5 we
therefore conclude, that the fifth root of the number proposed

contains at least two figures ; this root may then be represented

by a + 6, a denoting the tens and b the units. The expression for

the proposed number will then be

{a +by=za^ + daH+ 10 a^ b^ + he.

I have not developed all the terms of this power, because it is

sufficient, as will be seen immediately, that the composition of the

first two be known.

Now it is evident, that as a^, or the fifth power of the tens of

this root, can have no figure, that falls below hundreds of thou-

sands, it does not enter into the last five figures on the right of the

proposed number; we, therefore, separate these five figures.

If there remained more than five figures on the left, we should

repeat the same reasoning, and thus separate the proposed number
into portions of five figures each, proceeding from the right to the

left. The last of these portions on the left, will contain the fifth

power of the units of the highest order found in the root.

We find, by forming the fifth powers of

numbers consisting of only one figure, that

2315 lies between the fifth power of 4, or

1024, and that of five, or 3125. We take, therefore, 4 for the

tens of the root sought ; then subtracting the fifth power of this

number, or 1024, from the first portion of the proposed number,

we have for a remainder 1291. This remainder, together with

the following portion, which is to be brought down, must contain

5 a^6 -{- 10 a^ J2 ^ ^^^ which is left, after a^ has been subtract-

ed from {a + by ; but among these terms, that of the highest

degree is 5 a^6, or five times the fourth power of the tens multi-

plied by the units, because it has no figure, which falls below tens

of thousands. In order to consider this term by itself, we sepa-

rate the last four figures on the right, which make no part of it,

and the number 12915, remaining on the left, will contain this

2315,54007 47

1024

1291 5,4007 1280
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term, together with the tens of thousands arising from the suc-

ceeding terms. It is obvious, therefore, that by dividing 12915

by 5 a^, or five times the fourth power of the four tens already

found, we shall only approximate the units. The fourth power

of 4 is 256; five times this gives 1280; if we divide 12915 by

1280, we find 10 for the quotient, but we cannot put more than

9 in the place of the root, and it is even necessary, before we

adopt this, to try whether the whole root 49, which we thus

obtain, will not give a fifth power greater than the proposed

number. We find indeed by pursuing this course, that the num-

ber 49 must be diminished by two units, and that the actual root

is 47, with a remainder 2209000 ; for the fifth power of 47 is

229345007 ; that is, the exact root of the proposed number falls

between 47 and 48.

If there were another portion still, we should bring it down

and annex it to the remainder, resulting from the subtraction of

the fifth power found as above, from the first two portions, and

proceed with this whole remainder, as we did with the preceding,

and so on.

After what has been said, it will be easy to apply the rules,

which have been given, as well in extricating the square and cube

root of fractions, as in approximating the roots of imperfect powers

of these degrees.

155. We may by processes, founded on the same principles,

extract the roots of literal quantities. The following example

will be sufficient to illustrate the method, which is to be employed,

whatever be the degree of the root required.

We found in art. 143., the sixth power of 2 a;^ — 5 a^ ; we

shall now extract the root of this power. The process is as fol-

lows
;

2 x^— 5 a^

1921?^

64 a;i8 --960aP x^' +
+

6000 a^ «i3

37500 a^3a;6

+

20000 a> x^

37500 a}^ x^

15625 «i8

64a;'8

rem. —960a^x^^+ &c.

The quantity proposed being arranged with reference to the

letter x, its first term must be the sixth power of the first term

of the root arranged with reference to the same letter ; taking then

the sixth root of 64 x^^, according to the rule given in art. 129., we

have 2 x^ for the first term of the root required.
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If we raise this result to the sixth power, and subtract it from

the proposed quantity, the remainder must necessarily commence

with the second term, produced by the developement of the sixth

power of the first two terms of the root. Bui, in the expression

(a + hY = a^ + 6a^b + hc.

this second term is the product of six times the fifth power of the

first term of the root by the second ; and if we divide it by 6 a^,

the quotient will be the second term b.

We must, therefore, take six times the fifth power of the first

term 2 x^ of the root, which gives

6 X o2x^^ or 192 j:^^

and divide, by this quantity, the term— 960 a^ x^^, which is the

first term of the remainder, after the preceding operation ; the

quotient— 5 a^ is the second term of the root. In order to verify

it, we raise the binomial 2 x^— 5 a^ to the sixth power, which we

find is the proposed quantity itself.

If the quantity were such as to require another term in the root,

we should proceed to find, after the manner above given, a second

remainder, which would begin with six times the product of the

fifth power of the first two terms of the root by the third, and

which consequently being divided by 6 (2 o:^— 5 a^)^, the quotient

would be this third term of the root ; we should then verify it by

taking the sixth power of the three terms. The same course might

be pursued, whatever number of terms might remain to be found.

Of Equations with Two Terms.

156. Every equation, involving only one power of the unknown

quantity, combined with known quantities, may always be reduced

to two terms, one of which is made up of all those which contain

the unknown quantity, united in one expression, and the other

comprehends all the known quantities collected together. This

has been already shown with respect to equations of the second

degree, art. 105., and niay be easily proved concerning those of

any degree whatever.

If we have, for example, the equation

«2 x^ — a^ b^ zmb^ c^ -{- acx^^

by bringing all the terms involving x into one member, we obtain

a^ x^ — acx^ = 6* c3 _^ a^ j2^

or (a^ — rtc)a;5 = 6* c3 -f
^s ja.
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Now if we represent the quantities

^a — ^ c hy p, 6* c^ + a^ h^ by q^

the preceding equation becomes

p x^ = q ;

freeing x^ froni the quantity, by which it is multiplied, we have

x^^i;
P

whence we conclude
5 ^

9,

\P
In general, every equation with two terms being reduced to the

form

px"^ =:q,

gives

x"^ = ^:
P

taking the root then of the degree m of each member, we have

\P
157. It must be observed, that if the exponent m is an odd

number, the radical expression will have only one sign, which

will be that of the original quantity (131).

When the exponent m is even, the radical expression will have

the double sign zfc ; it will in this case be imaginary, if the quan-

tity - is negative, and the question will be absurd, like those of

which we have seen examples in equations of the second de-

gree (131).

See some examples.

The equation a?^ =— 1024,

gives

a? = V— 1024 = — 4,

the exponent 5 being an odd number.

The equation

x^ = 626,
4

gives a? = d= v'625 = =b 5,

as the exponent 4 is even.
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Lastly, the equation

a:* = — 16,

which gives

leads only to imaginary values, because while the exponent 4 is

even, the quantity under the radical sign is negative.

158. I shall here notice an analytical fact, which deserves atten-

tion on account of its utility, as well in the remaining part of the

present treatise, as in the Supplement, and which is sufficiently

remarkable in itself; it is this, that all the expressions x — a,

x^ — a^, x^ — a^, and in general x^ — a^ [m being any positive

whole number), are exactly divisible by a? — a. This is obvious

with respect to the first. We know that the second

0^2 _ ^2 _ (^ _|_ ^) (^ _ ^) ^34)^

and the others may be easily decomposed by division. If we

divide x'^— a'^ by a? — a, we obtain for a quotient

the exponent of x, in each term, being less by unity than in the

preceding, and that of a increasing in the same ratio. But instead

of pursuing the operation through its several steps, I shall present

immediately to view the equation

^'""^ ^'^
=z a?"»-i + a x"^-^ + a^x''^ + a^-^ x + a"^S

z — a

which may be verified by multiplying the second member by a?— a.

It then becomes

^m ^ ^ ^m-l ^ ^2 ^m~2
_J_

^m-2 ^2 _j, ^m-1 -j,

d ^mr-l ^2 <j.m-2 ^3 ^m-3 ^wi-l ^ ^m .

all the terms in the upper line, after the first, being the same, with

the exception of the signs, as those preceding the last in the lower

line, there only remains after reduction x'^ — a^, that is, the divi-

dend proposed.

It must be observed, that the term a^ x"^-^, in the upper line, is

necessarily followed by the term a^ x"^—^, which is destroyed by

the corresponding term in the lower line ; and that, in the same

manner we find, in the lower line, before the term a"^^x, a term

a»»—2 ^2^ which destroys the corresponding one in the upper line.

These terms are not expressed, but are supposed to be compre-

hended in the interval denoted by the points.
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159. This leads to very important consequences, relative to the

equation with two terms a:'" zz: -.

If we designate by a the number, which is obtained by directly

extracting the root according to the rules given in art. 154., we

have

i =z a"^ or 0?^ = a^;
P

transposing the second member we obtain

^m — a"^ = 0.

The quantity cc^ — a"^ is divisible by x — a, and we have by the

preceding article

This last result, which vanishes when a; = a, is also reduced to

nothing, if we have

X.m-i ^ a x"^-^ + a^-2 X + a^-A = 0. (116);

and, consequently, if there exists a value of x, which satisfies this

last equation, it will satisfy also the equation proposed.

These values have with unity very simple relations, which may

be discovered by making x =^ ay ; then the equation x^— a^ =zO

becomes

^m y7n ^m -_. 0, or y"^ 1=0,
and we obtain the values of x, by multiplying those of y by the

number a.

The equation y^— 1 =0, gives in the first place

m_
y^zzz I, y =z^ =1;

then by dividing y"^— 1 by y— 1, we have

ym-^l ^ ym-2 ^ ym-3 + y^ ^ y + I,

Taking this quotient for one of the members, and zero for the

other, we form the equation on which the other values of y de-

pend ; and these values will, in the same manner, satisfy the

equation

y"* — 1=0, or y"^ = 1,

that is, their power of the degree m will be unity.

Hence we infer the fact, singular at first view, that unity may
have many roots beside itself. These roots, though imaginary, are

still of frequent use in analysis. I can, however, exhibit here only
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those of the four first degrees, as it is only for these degrees, that

we can resolve, by preceding observations, the equation

ym-l _|_ ym-2
-f 1 = 0,

from which they are derived.

(1.) Let m = 2, we have

y^ — l=zO,

whence we obtain

2/ = + 1, y=^ — l.

(2.) By making m =z 2, we have

2/3 _ 1 = 0,

whence we deduce

then 2/^ -[- ?/ -j- 1 z= 0.

This last equation being resolved, gives

— 1 + K/'^-S ~ 1 — v/
—

"3

y = -r, . 2/
= -^ >

thus we have for this degree the three roots

y=:l, y= , y^ .

The last two are imaginary ; but if we take the cube, forming that

of the numerator, by the rule given in art* 34., and observing that

the square of y/ — 3 being — 3, its cube is — 3 v — 3, we still

find 2/^ =^ 1, in the same manner as when we employ the root

y=l.
(3.) Taking m = 4, we have

y^—l-0,
from which we deduce

then y^ + y^ + y + 1 = 0.

We are not, at present, furnished with the means of resolving this

equation j but observing that

y*-l=(y^+l) {f - 1),

we have successively

j,2 _ I = p, / ^ 1 = 0,

whence

y = -{-\, y = — l, y = +v^^, y =— ^"^"1.

Two of these values only are real ; and the other two imaginary.

Alg.
' 23
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This multiplicity of roots of unity is agreeable to a general law

of equations, according to which any unknown quantity admits of

as many values, as there are units in the exponent denoting the

degree of the equation, by which this unknown quantity is deter-

mined ; and when the question does not admit of so many real

solutions, the number is completed by purely algebraic symbols,

which being subjected to the operations, that are indicated, verify

the equation.

Hence it follows, that there are two kinds of expressions or

values for the roots of numbers ; the first, which we shall term the

arithmetical determination, is the number which is found by the

methods explained in art. 154., and which answers to each particu-

lar case ; the second comprehends negative values and imaginary

expressions, which we shall designate by the term algebraic deter-

minations, because they consist merely in the combination of alge-

braic signs.

Of Equations which may be resolved in the same manner as those

of the Second Degree,

160. These are equations, which contain only two different

powers of the unknown quantity, the exponent of one of which is

double that of the other. Their general formula is

aP^ -^ p x'^ =z q,

p and q being known quantities.

Now if we take x^ for the unknown quantity, and make x'^ = u,

we have

whence

u = — \p±x/q + ip^ (109);

restoring x^ in the place of w, we have

x^z=i~\pz^^Y+l~f^

an equation consisting of two terms, since the expression

as it implies only known operations, to be performed on given

quantities, must be regarded as representing known quantities.

Designating the two values of this expression by a and a^ we

have

x^ zn a and x"^ v=z a',
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from which we obtain

X = -y'a and x = \/a'»

If the exponent m be even, instead of the two values given

above, we shall have four, since each radical expression may take

the sign zfc ; then

m m

m m
^ = — \/(h <3? = — \/a',

and these four values will be real, if the quantities a and a' are

positive.

All the values of x may be comprehended under one formula,

by indicating directly the root of the two members of the equation

a?- = — |p± V? + ip2,

which gives

^ = \ — iP ± V9 + il>^'

The following question produces an equation of this kind.

161. To resolve the number 6 into two such factors, that the sum

of their cubes shall be 26,

Let X be one of these factors, the other will be -
; then taking

216
the sum of their cubes x^ and —3-, we have the equation

I 2-3

which may be reduced to

x^ + 216 = 25 x^,

or x^ — 35x^z=—216.

If we consider x^ as the unknown quantity, we obtain, by the

rule given for equations of the second degree,

x^ = Y ± \/{\'Y
—
~3T6.

By going through the numerical calculations, which are indi-

cated, we find

f3B\2 1225
\ 2 ; 45

and consequently,

X' = V + V = V = 27,

^3 -- 3^5 _ y -:- y -- 3,
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whence

3_
X =z V27 = 3,

3__

X =: \/S =2
The first value gives for the second factor | or 2, while the second

value presents f or 3 ; we have, therefore, in the one case 3 and

and 2 for the factors sought, and in the other 2 and 3. These

two solutions differ only in the order of the factors of the given

number 6.

162. The equations, we have been considering, are also com-

prehended under the general law given in art. 159. ; for the values

of Vaj Vo/ are to be multiplied by the roots of unity belonging to

the degree denoted by the exponent m.

Applying what has been said to the equation,

x^ — Sbx^ = —216,

we find the six following roots

;

X =z I X S, a? = 1 X 2,

of which the first two only are real.

Calculus of Radical Expressions,

163. The great number of cases, in which no exact root can

be found, and the length of the operation necessary for obtaining

it by approximation, have led algebraists to endeavour to perform

immediately upon the quantities subjected to the radical sign, the

fundamental operations, intended to be performed upon their roots.

In this way we simplify the expression as much as possible, and

leave the extracting of the root, which is a more complicated pro-

cess, to be performed last, when the quantities are reduced to the

most simple state, which the nature of the question will allow.

The addition and subtraction of dissimilar radical quantities can

take place only by means of the signs -f- and — . For example,

the sums
3 _ 5 3 _ 3
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and the differences

3_ 5_ 3_ 3_
\/a — \/a, \/a — \/b,

can be expressed only under their present form.

The same cannot be said of the expression

5c 3

because the radical quantities, of which it is composed, become

similar, when they are reduced to their more simple forms, accord-

ing to the method explained in art. 130. First, we have

3

x/ii)a^b = \/Sa^ .2b or 2a\/2b
3 3 3

^2a^b ~\/a^.2b or a^\/2b;

the quantity, therefore, becomes

3
, ^ 3 5a2c3

4 a \/2b + 2 a V26 ^-j- \/2b,

which gives, when reduced,

3 5 a c 3 _ V a 3 _
6a\/2b -J- \^2b or {(S d— 5 c) -^4^2 6.

164. With respect to other operations the calculus of radical

quantities depends upon the principle already referred to, namely
;

that a product, consisting of several factors, is raised to any power

by raising each of the factors to this power. So also, by suppress-

ing the radical sign, prefixed to a quantity, we raise this quantity

to the power denoted by the exponent of this sign. For example,
7 _
\/a raised to the seventh power, is a simply, since this operation,

7 _
being the reverse of that which is indicated by the sign \/~, merely

restores the quantity a to its original state.

According to the principles here laid down, if, for example, in

the expression
7 _ 7

__

\/a X \/b,

we suppress the radical signs, the result a b will be the seventh

power of the above product ; and taking the seventh root, we find

7 _ 7 _ 7

S/a X s/b =^ \/ ab»

This reasoning, which may be applied to all similar cases, shows,

that in order to multiply two radical expressions of the same degree

together, tve must take the product of the quantities under the radi-

cal sign, observing to place it under a sign of the same degree.
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We have by this rule

21 a^b^^Wi;

4 y' a2 — 62 X V «^ + ^^ — 4 v'(«^ — 62) (a2 -f 62) =

65 c2

5

'2a9_a3 66 a2 63c2 + 65c2

i«3(2a6_56) 63a .
2 ,

,2^

since

5

a*— b*= (a^ + b^) {a" — h^).

|a3 63 c9 2 a6 — 6«
~ X

165. As the seventh power of the expression -y-, for example,

is T, it will be seen, by taking the seventh root of this last result, that

7__ 7 _
\/a _ [a

7-~ J6-
V6 ^

Hence to divide a radical quantity by another of the same degree,

we must take the quotient arisingfrom the division of the quantities

under the radical sign, recollecting to place it under a sign of the

same degree.

We find by this rule, that

\/6ah \Wab —

w'^sZTp p — 62

^ a+b \a+6
5 5 5

\/a^6 _ Ia^ _ I a^

V63^
^63c2-^|62c«'
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166. It follows from the rule, given in art. 164., for the multi-

plication of radical quantities of the same degree, that to raise a

radical quantity to any power whatever^ we have only to raise to

this power the quantity under the radical sign, observing that the

5

result must take the same sign ; thus to raise \/a b, for example to

the third power is to take the product

5 5 5_
\/ab X \/«?* X s/ab,

and as the radical signs are all of the same degree, the quantities

to which they belong are to be multiplied together, and the radi-

cal sign to be prefixed to the product, which gives

5

V/53 fe3.

7

In the same manner s/a'-^ 63 raised to the fourth power, gives

7

V/a8fti2, which may be reduced to

7
_

a h v/aT5,

by resolving a^ b^^ into a' 6"^ X cth^, and taking the root of the fac-

tor a' 6^ (130).

It may be observed, that when the exponent belonging to the

radical sign is divisible by that of the power to which the proposed

quantity is to be raised, the operation is performed by dividing the

first exponent by the second. For example,

I ^_\^ ^ -
\\/a/ = \/a,

because 1 = 3.

6_
Indeed \/a denotes a quantity, which is six times a factor in a,

3 _ ^

and the quantity \/a, which is obtained by dividing 6 by 2, being

only three times a factor in a, is consequently equivalent to the

product of two of the first factors, and is therefore the second
6 _

power of one of these factors, or of \/a.

The same reasoning may be applied to all similar cases, as in

the following example

;

^12 \3 4

K^a^bJ = VaSft.

167. If we reverse the methods given in the preceding article,

we shall be furnished with rules for extracting the roots of radical

quantities.
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We perceive, by attending to the rule first stated, that if the

exponents of the quantities under the radical sign are divisible by

that of the root required^ the operation may be performed as if there

were no radical sign, only it is to be observed, that the result must

be placed under the original sign.

We find, for example, that

3 5

/5 __ /3 __' 5 __

3

From the second rule given in the preceding article, it is evident,

that the general method for finding the root of radical quantities,

is to multiply the exponent belonging to the radical sign by that of

the root, which is to be extracted.

By this last rule, we find, that

3

5

In fact v/a4 is a quantity, which is five times a factor in a"*

(24, 129) ; but the cube root of Vtt4, being also three times a fac-

tor in this last quantity, is found 5x3 times or 15 times a factor

3

y/a4 z= Y/a4. In the same manner it

5

168, Since by multiplying the exponent of a quantity under a

radical sign, by any number (166), we raise the root which is indi-

cated, to the power denoted by this number, and by multiplying

also the exponent belonging to the radical sign, by the same num-

ber (167), we obtain for the result a root of a degree equal to that

of the power which was before formed, it is evident, that this

second operation reduces the proposed quantity back to its original

state.

5 __ 35

The expression, \/a^, for example, may be changed into \/a^i,

by multiplying the exponents 5 and 3 by 7 ; for multiplying the

exponent of a^ by 7, we have, making use of the radical sign,

5

y^a^i, the seventh power of the proposed radical quantity, and

multiplying by 7 the exponent 5 belonging to the radical sign in
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5

the expression \/a^, we obtain the seventh root of the former

result ] this last process, therefore, restores the expression to its

original value.

169. By this double operation, we reduce to the same degree any

number of radical quantities of different degrees^ by multiplying, at

the same time, the exponent belonging to each radical sign, and those

of the quantities under this sign, by the product of the exponents

belonging to all the other radical signs. That the new exponents,

which are thus found for the radical signs, are the same, is obvious

at once, since they arise from the product of all the exponents

belonging to the original radical signs ; and after what has been

said above, it is evident that the value of each radical quantity is

the same as before.

By this rule we transform
5

and
7

35 35

into \/«2i 614 and V/c20 rfl5.

In the same manner, the three quantities.

3

v/a62,

5

Va2c3,

7

become respectively

105 105 105

\/a35 670, ^a42 c63, y/660 c45.

If we meet with numbers, under the radical signs, we shall be

led, in applying this rule, to raise them to the power denoted by

the product of the exponents belonging to the other radical signs.

170. In the same way, we may place under a radical sign a

factor which is without one, by raising it to the power denoted by

the exponent which accompanies this sign.

We may change, for example,

5 3 _ 3

a^ into v^aio, and 2 a \/Z into V8 a^ 6.

171. After having, by the transformation explained above,

reduced any radical quantities whatever, to the same degree, we
may apply to them the rules, given in articles 164. and 165. for

the multiplication and division of radical quantities of the same

degree.

Let there be the general expressions

^aP b^ X x/b"- C ;

Alg. U
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we change (169)

into

then by the rule given in art. 164. we have

for the product of the proposed radical quantities.

We have also by the rule, art. 165.

^np ^n^ -mr

Remarks on some peculiar cases, which occur in the Calculus of

Radical Quantities,

172. The rules to which we have reduced the calculus of

radical quantities, [nay be applied without difficulty, when the

quantities employed are real. But they might lead the learner

into error with regard to imaginary quantities, if they are not

accompanied with some remarks upon the properties of equations

with two terms.

For example, the rule laid down in art. 164. gives directly

\/— u X V' — ^ — V^ — ^X — ^ — \/ a^\

and if we take + a for Vo^^ we evidently come to an erroneous

result, for the product \/~'-^~a X v/ — «j being the square of

4^'ZIa, must be obtained by suppressing the radical sign, and is

therefore equal to — «.

Bezout has obviated this difficulty, by observing, that when we

do not know by what method the square a^ has been formed, we

must assign for its root both + ct and — a ; but when, by means

of steps already taken, we know which of these two quantities

multiplied by itself produced a^, we are not allowed, in going back

to the root, to take the other quantity. This is evidently the case

with respect to the expression \/— a X \/~^~^ } here we know,

that the quantity a^, contained under the radical sign in the expres-

sion \/a^i arises from — a multiplied by — a; the ambiguity.
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therefore, is prevented, and it will be readily seen, that in taking

the root, we are limited to — a.

The difficulty above mentioned would present itself in regard to

the product \/a X v/«) ^f we were not led, by the circumstance of

there being no negative sign in the expression, to take immediately

the positive value of \/cfi. In this case, since a^ arises from + a

multiplied by -|- a, its root must necessarily be + a»

There can be no doubt with respect to examples of the kind we

have been considering ; but there are cases, which can be clearly

explained only by attending to the properties of equations with two

terms.

173. If, for example, it were required to find the product

4_
^^a v/— 1; reducing the second of these radical expressions to the

same degree with the first (169), we have

Va X \/ (
— 1)2 = v/« X \/ + 1 = Va,

a result which is real, although it appears evident, that the quantity

4_
V/a multiplied by the imaginary quantity \/ — 1, ought to give an

imaginary product. It must not be supposed, however, that the

expression \/a is in all respects false, but only that it is to be taken

in a very peculiar sense.

4_
In fact, \/a, considered algebraically, being the expression for

the unknown quantity ^, in the equation with two terms,

x^ — a = 0,

admits of four different values (159) ; for if we make a = a\ by
4 _

taking a to represent the numerical value of v^aj considered inde-

pendently of its sign, or the arithmetical determination of this quan-

tity, we have the four values

« X + 1, « X — 1, aX+V'^^h aX— \/^==T

the third of which is precisely the product proposed.

By a little attention, it will be readily perceived, whence the

ambiguity, of which we have been speaking, arises. The second

power + 1 of the quantity —- 1 under the radical sign, as it may

arise as well from + 1 X + 1? as from — 1 X — 1, causes the

4
__ ^ ^

quantity \/i to have two values, which are not found in V — 1-

m n

In general, the process by which the product y/a X v/6"is
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formed, is reduced to that of raising this product to the power

mn; for if we represent it by z, that is, if we make

by raising the two members of this equation, first to the power m,

we have
n

again, raising it to the power n, we obtain

a« ^TO -_ ^mn^

This product, therefore, being determined only by means of its

power of the degree m n, or by an equation of this degree with

two terms, must have mn values (159). This will be perceived

at once, if we reflect that the expressions \/a and \/by being noth-

ing but the values of the unknown quantities x and y, in the equa-

tions with two terms,

x^ — a z= 0, 2/" — J = 0,

and, consequently, admitting of m and of n determinations, we

have, by uniting the several m determinations of x, with the sev-

eral n determinations of j/, mn determinations of the product

required.

When we are employed upon real quantities, there is no difB-

culty in finding the values, because the number of those, that are

real, is never more than two (157), which differ only in the sign.

174. If we use the transformation explained in art. 159., the

difficulty will be confined to the roots of + 1 and — 1 ; for if we

make x =z at and y =. §u^ a and /5 denoting the numerical values
m n

of Va* V^ considered without regard to the sign, the equations

a?^ ZF a = 0, i/« =F 6 = 0,

become

<"» ip 1 = 0, w« =F 1 = 0,

whence

xy =ijs/ ±aX ^/ ±\h = a^tu=i oi(i\/ ±1 X y^ ± 1

;

m n

in which a
fi

represents the product of the numbers \/a, \/b, or the

arithmetical determination of the root of the degree mn oi the

number a" b^.
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If we would give a determinate value to the product of the

radical quantities y' =b a, y^ =h &, by fixing the degree of the radi-

cal signs, we must obtain from the equations

the several expressions for -y^ zh 1, \/ =h 1, and combine them in a

suitable manner.

To conclude, these operations are not often required, except in

some very simple cases, of which the following are the principal

;

(1.) ^iir^ X >/"=r6' = \/a X \/b (v^^ X v'^ni)

;

I suppress the radical sign in the expression v — h 2tnd obtain

V—"a X V —~6 = \/"a6 X — 1 = — V'ab'

4 4 4 4

(2.) V--«X\/ — & = Va& {V—lfy
I do not here multiply — 1 by — 1, because this would lead to

the ambiguity mentioned in art. 173. ; but observing, that the

square of the fourth root is simply the square root, we have

V — a X V— b =\/ah X V—l.
6 6 6 6 6 3

(3.) V—aXV — 6 = Va& X {\^— if ^ \/ ah XV —

1

6 6

= \/a6 X — 1 =— \/«^'

The results will be thus found to be alternately real and imaginary.

Calculus of Fractional Exponents.

. 175. If we substitute in the place of the radical signs, their

corresponding fractional exponents (132), and apply immediately

the rules for the exponents, we shall obtain the same results, as

those furnished by the methods employed in the calculus of radical

quantities.

If we transform, for example,

into

we have

\/a3&2, Va3c2,

3 2 3 2

a* b^j a^ c^y

S/Wb^ X \/a^c^ zza\b^ X a^ c^ =
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^1 + 1 jf cl

'Algebra.

6 2 2

then, since 6
: 1 + 1, and, consequently,

1 1 + T
a^ z= a ~ * z=i a X a' (25),

^ihlc^ is

5

and ( equivalent io \/al>2 c2, we have

5 5 5 __
\/a^b X v/a3c2 = a \/ ah^ c^,

a result which is not only exact, but is reduced to its most simple

form.

Let there be the general example \^aP b^ X s/b'' (f ; the radi-

cal expressions here employed may be transformed into

P Q LI

we then have, according to the rules for exponents, (25),

^m J^m ^ ^n ^n -__ ^w ^m "T n ^n
^

or
Now in order to add the fractions —, -, we must reduce them tom n

the same denominator ; and to give uniformity to the results, we

must do the same with respect to the fractions ~, - : we obtain

by this means,

^mn J win ^m« •

and placing this result under the radical sign, we have

s/a^ 6? X j^ b"" if = y'a^Pfc'^'"'' c'^-

176. The manner of performing division is equally simple, we
have for example

V^^_«^J* i* /.JON
5 —TT = 4_3 i \^^h

s/a^c ^'^' «' '^'

which may be reduced to

2

this placed under the radical sign becomes
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5 _

\ac

5 5

\/a'^c

We have in general,

x/aP 63 __ a'^b'^ __a^h''

\/}/ e h'^ c^ c"

reducing the fractional exponents to the same denominator, in

order to perform the subtraction, which is required, we find

m np nq—mr mn

A^ aP b^ fjnp l^nq-^r

n ms \ c"*^

A^b'' c"

It is obvious, that the reduction of fractional exponents to the

same denominator, answers here to the reduction of radical ex-

pressions to the same degree, and leads to precisely the same

results (171).

177. It is also very evident, by the rule given in art. 127., that

(m \ n / P\n ^ ""^

y(^j = Va^j zi: a^ — ya'^P,

and by the rule laid down in art. 129., that

n n

\m
\ P P "^^

A\/~^ = Aa^ == a^ = \/aP .

The calculus of fractional exponents affords one of the most

remarkable examples of the utility of signs, when well chosen.

The analogy which prevails among exponents, both fractional and

entire, renders the rules, that are to be followed with respect to the

latter, applicable also to the former ; but a particular investigation

is necessary in each case, when we use the sign y", because it

has no connexion with the operation that is indicated. The fur-

ther we advance in algebra, the more fully shall we be convinced

of the numerous advantages, which arise from the notation by

exponents, introduced by Descartes.

Examples in the Formation of Powers of Compound Algebraic

Expressions.

1. (a _ 6)3 = a3 — 3 a^J + 3 a 62 _ 63.

2. (4 — 3 6)3 z= 64 — 144 6 + 1086^ — 27 b\
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3. (5— 4 a?)4= 625— 2000a?+ 2400 x^— 1280 x^+ 256a?^

4. (a^ + Sa by = a^^ + 12 a}^ b + b4 aH^ + 108 a^ S^

+ 81 a^ J4^

6. (5 a^ (? dl— Aab d^ = 625 a^ c^ d"^ — 2000 a^ b c« d^

+ 2400 a^ b^ c^ 6/6— 1280 a^ P c^ d'^ + 256 a^ i^ J^,

6. (3ac— 2 6 6^)^ = 243 a^c^— 810 a4c4&df+ 1080 a^c^ 62 ^2

— 720 a^cs 63^3 + 240 a c 6^ rf^ — 32 6^ rf^

'7. (v/a + V&")^ = «^+6«6+62+(4a+46)v^.
8. (a + 6 + c)3 = a^ + 3 a^ 6 + S a^ c + 2ab^ + 6 ab c

+ 2ac^ + P + 2b^c+Sbc^ + c^

9. (a + 2&+c)3=:a3+6a2j + 3a2^+ 12a62+ 12aJc

+ 3 a c^ + 8 6^ + 12 i^ c + 6 6 c^ + c^.

10. {a + b + c + dfz=za^ + 2ab + 2ac + 2ad + b^

+ 2bc + 2bd + c^+2cd + dK

11. (a iJ)'^ = a^ ± ja^-i Ji + ^^^^^ a~~' 6^

12. Make n =

1X2X3 " *• +

Examples in <Ae Extraction of the CvJbe 1

3

1. Vis; 67

3

2. V884736 = 96. ..i: -

3

3. VI 19J 016 = 106.

3

4. V2460375 = 135.

3

6. V12 = 2.28942 . . . ,

3

6. V5.8 = 1.79670 ....
3

'7. Vi
— 1

8. VH 3
4*

3

9- vi" = 0.87358

10. v/f = 0.94103 ....

11. V3f = 1. 56049
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Examples in the Extraction of the Cube Roots of Algebraic

Expressions.

1. x/{6x^ + x^ + S + 12a?) 1= 0^ + 2.

2. V (294 a 0)2— 84 a^ x + 8a^— 343 x^) =2 a—7 x.

3. ^{x^— 6cx^+ I2c^x^— 8c^x^) =zx^— 2cx.
3

4. V (tt^*^— 6 a^"^ 1
a;'* + 12 a^+2 ^2»_ 8 a^ a?^« )

= a"*— 2 a o;^.

7. ^ (a3 + 3 a2 J + 3 a^ + 3 a &2 + 6 a & c + 3 a c^ + 63

+ 3 6^ c + 3 6 c-^ + c^) zn a + 6 + c.

8. V (27 z^ — 54 a z^ + 63 a^ z^ — 44 a^ z^ + 21 a^ z^

— ea^z + a^) = 3z^— 2az+a^ •

9. y/(S x^ + 48 cx^ + 60 c'^ a;^ — 80 c^ x^ — go c^ aP

+ 108c^x— 27c^)=:2x^ + 4cx— 3 cK

3 _ x3 x^ 5x9 10x12
10. Via — ^; ~« — 3^2 9^5 81a8~243^i~----

,,3 2:3 x6 , 5x9 10^12
11. v(a^ + ^^) = a+ 3^2-9T5+8T^-243-an+----

3 a: a^ 5x3 iq ^4
12. V (1 — ^) — ^ — 3 ~ 9

""
81 ~ 243

~
,„ 3 X X2 , 5x3 10x4 ,

13. V(l+^) = l + 3-9+-gT-'243-+

Examples in the Multiplication of Radical Expressions.

l.^ii|iP>T b \/y X C\/z = ab c \/xyz.
O • q •> 3

2. V4 X 7 V6 X I V5 = I Vi20.

wiiSf. 25
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6 _ 6 _
8. 4 X 2 V3 X \/72 = 8 V6.

4. 5 v3 X 7 VI X V2 = 140,

6. c \/a X d s/a =^ ac d.

3

6. v2 X v3 X V5 = V648000.

3 _ 6
__

8 24

7. V2 X Vl- X v3 = VH"-
12 8 24

8. U X t = fc'.

63;53 ^ c ^ ^ a2 c5 — 6 r^ ^c?3 e

10. (V5 + 2 y^7 + 3 vio) X 2 V5 = 10 + 4 V35 + 6 V50*

11. (3 + v5) X (2 — v5) = 1 — V5.

12. (7+2 vS) X (9 — 5 vg) zz. 3 — 17 y/g.

13. (_ 5 — VI) X ( — 5 + VI) =: 241.

14. (9 + 2 vio) X (9 — 2 viO) = 41.

15. (2 V8 + 3 V5 — 7 v2) X (V72 — 5 v20 — 2 V2)
~ — 174 + 42 vio.

3 3 3 3 3 3

16. (v5— 2v6)X (3V4— V36) = 12 + 3v20— 6v2i
3— V180.

3 3_ 3 3

17. (2v3+\/2; X(2 + V9)=4V3 + 2V2+V18+6V3.
18. (Va — V^^ ) X (Va + V^) = « — ^•

19. {cs/a + d V&) X (c Va — d \^h) =• ac^— h d^.

4 4 4 4

21. (v^a + V& + Vc)^ = V« + Vfe" + v/c + 2 v^
4__ 4

+ 2vac + 2\/bc.

^Examples in the Division of Radical Express^ii^

1. C^a^dvb = -^^-^-
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2. 2 a J^ c^ H- 4 v a3 6 c5

3^ 5 I a^

4. 4 vl^ -r- 2 v3 = 2 v/V •

5. Cv/(a2— a:2)"4-v/(a + 0:) i=cv'(a— :r).

6. V(a62— J^c)-^ V(«— c) — 6.

7. ( V 72 + V 32— 4) -^ V 8" == 5 — v/'2

.

8.
( V6 + 4vl8— 3— 8 v2) -^ V3 = V2 +4va— V3

— 8V|.
9. (2V32+3v2 + 4)-^4v8= y + J V2.

10. l-4-(v3 + 2) r= 2— v3.

11. 3~-(I + v2)==3v2— 3.

12. (l+v2)-^(2 — v2)==2 + lv2.

J3. (5— 7v3)-^-(l + v3) =6 v3— 13.

14. (6— 3V5)-^(V5— l) = |v'5— f.

15. (V3 + \/2) — (V3— %/2) = 5 + 2 V6.

16. 1-^(V2+ V3 - V5) =^ + ^ + V^S.

17. 7 -4- (vIO — v2 — V'3 ) = 35 v^iO + 77 V2 + 63 V3
+ 14 s/W.

18. (2— v/3)-^(l + V2+v/3) = l + fvI— iv3— fV6.

19. v^-^(^^ + Vc) ^ .,_^ .

20. (va + V^) -^{Va— vb)
'^

fl + 6-J-2v«& + ^ v/«2 6 + 2 V a 63

Examples in the Calcidus of Fractional ExponenU^

(a) Midtiplication.
^(JP

3 ."SO
rz a * -* = a^ X/a'

\ 2 ^
2 . ,Z5 %

3. a X a' X a 5 -^ n 2T5
2 0» ^
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.7 1_3 1
X a « =a

a\/a^

4. a * 6 X

15J

a' b^ C r= a^^J 3^^ j^p-

5 7 6 1_2 32. 3_6_7_ o^ ** ^

5. Vtt^a X \/a2 X V^^ = a ^ • a"^ • a^ — a^ * ^ = a^ V a^^.

60

_ c^— 3/^ l(a + a^)^^

4

TcX^^^ba ^ Xa^ c^ X c^ b *

£3

6 3

7. ;;h ^ ^"' >^

2 J. L3 l]^6

.

8. iVa^+Vb^) X (v/a3— v/&2)=z(a* + 6^) X (a* — 6*)

a^--6^ =1 a^/a-

Division.

--V/64.

1.

p

^^ a 71

P.

9 =a
mq-j-np

nq
^

2.
3 5

-da'
c a-tV c

d y/a

3. a^b^-^a^^b ^ c = ^^ = - vP".

9. 2

a ^b^

J d^

29 U
__

65 c

g3 62(

60

a3 62^c |6i6 cZ2o

To
__ a3 62^c 161^

12
1%_

,,2 X VK5^2

^m m,^, 4 6 12 _ ^ A
^^ 5. {mm- 2 v/«^ 63 — a^ s/aH^ + ^ ^ V& ) "^ (^

= a^ — 2 6* =|p Va -*2 V^
jll^ 6. (V^—1^") '^ Wa — V6 ) = a^ + a^ ^

+ ^h \/a b*

= v«
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(c) Powers of Powers,

(m\ p J mp nq

a* 63^3 _- y^jTp;

40

20

5. ( (a*) ^) ~ ^ = >Ja-
6 5 6 _

6. x/ [a^ b VaS h cY = a^b Vc.

7.

3 8 ^

General Theory of Equations,

178. Eq,uations of the first and second degree are, properly

speaking, the only ones, which admit of a complete solution ; but

there are general properties of equations of whatever degree, by

which w^e are able to solve them, when they are numerical, and

which lead to many conclusions, of use in the higher parts of

algebra. These properties relate to the particular form, which

every equation is capable of assuming.

An equation in its most general form must contain all the powers

of the unknown quantity, from that of the degree of the equation to

the first degree, multiplied each by some known quantity, together

with one term wholly known.

A general equation of the fifth degree, for example, contains all

the powers of the unknown quantity, from the first to the fifth

;

and if there are several terms involving the same power of the
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unknown quantity, we must suppose them to be united in one
5

according to the method given for equations of the second degree,

art. 108. All the terms of the equation are then to be brought

into one member, as in the article above referred to ; the other

member will necessarily be zero ; and when the first term is nega-

tive, it is rendered positive by changing the signs of all the terms

of the equation.

In this way we obtain an expression similar to the following
5

in which it is to be observed, that the letters n, p, q, r, s, t, may
represent negative as well as positive numbers ; then dividing the

whole by n, in order that the first term may have only unity for its

coefficient, and making
'#'

? = P, ^ = Q, - :=: /^, -= S, - = T,
n n ^ n ^ n u

we have

a;5 _j_ p^4 ^ Q.T^ + 7? X^ _|- 5'^ + r rz: 0.

In future, I shall suppose, that equations have always been pre-

pared as above, and shall represent the general equation of any

degree whatever by

x^ ^T x^-^ + Q x""-'^ + Ta?+{7=:0.

The interval denoted by the pdBts may be filled up, when the

exponent n takes a determinate value.

Every quantity or expression, whether real or imaginary, which,

put in the place of the unknown quantity x in an equation prepared

as above, renders the first member equal to zero, and which con-

sequently satisfies the question, is called the root of the proposed

equation ; but as the inquiry does not at present relate to powers,

this acceptation of the term root is more general, than that, in

which it has hitherto been used (90, 129).

179. Take a proposition analogous to those given in articles

116 and 159, and one which may be regarded as fundamental.

Jfthe root of any equation whatever^

^n ^ Px^-i + Qx'^-2 4-Tx + U = 0,

be represented by a, the first member of this equation may be exactly

divided by x — a.

Indeed, since a is one value of x, we have necessarily,

a« + Pa'^-'^ + q a"-2 ^ ^^ + U=z 0,
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and, consequently,

[/= — a^ — Pa«-i — q a«-2 — T a,

so that the equation proposed is precisely the same as

^n
_f_

p^n-1 ^ q ^n-2 + T'^'C > ^— a^ — P a^^-1 — Q a'^-2 — Ta]^^'
which may be reduced to

+ T (cr - a) i
- ^-

As the quantities

a?« — tt'^, vT^-i — a'^-i, ^^-2 _ a^-2^ a? — a,

are each divisible by a? — a (158), it is evident, that the first

member of the proposed equation is made up of terms, all of which

are divisible by this quantity, and may consequently be divided by

X — a, as the enunciation of the proposition requires.^

180. To form the quotient we have only to substitute for the

quantities

x^ — a^, x^-^'— a"-i, ^"-2— a^-~, x — a,

the quotients, which are obtained by dividing these quantities by

X — a, and which are respectively

'•'' D'AIembert has proved the same proposition in the following

manner.

If we conceive the first member of the proposed equation to be

divided by x — a, and the operation continued until all the terms

involving x are exhausted, the remainder, if there be any, cannot con-

tain X, If we represent this remainder by K, and the quotient to

which we arrive by Q, we have necessarily

x^ -)- P x'^-i + ^c. = Q (:c — a) + i?.

Now if we substitute a in the place of a;, the first member is reduced

to nothing, since a is the value of x ; the term Q (x — a) is also

nothing, because the factor x — a becomes zero ; we must, therefore,

have jR = 0, and it is so, independently of the substitution of a; for

as this remainder does not contain x, the substitution cannot take

place, and it still preserves the value it had before.

Hence it follows, that in every case, 72 in 0, and that, consequently,

cc^ -|- P x«-i + Q a;w--2 ^^

is exactly divisible by x — a.
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x""-^ + a"^^,

Arranging the result with reference to the powers of x, we have

+ Paj'^-^S + P^a.n~3 ^ p ^n-2^

+ Qa?^-3 ^ Qa'*-^

••••jj.y;--

181. It is evident from the rules of division simply, that if the

first member of the equation,

xn ^ Px""-^ + Qx"" 2 ^ &;c. = 0,

be divided by a? — a, the quotient obtained will be exhibited under

the following form,

3,71-1 ^ p/a:^2 j^ ^a?n-3 ^ g^^^

P% Of, &c. representing known quantities different from P, Q, &z;c.

we have then

x"" + F n«-i + &c. =z{x — a) {x""'^ + P'x'"'^ + he.)
;

and according to what was observed in art. 116., the proposed

equation may be verified in two ways, namely, by making

X — a = 0, or x"^-^ + F' x-^-" + &c. = 0.

Now if the equation

^n-l ^ p/a;n-2 _|_ ^c. =
has a root J, its first member will be divisible by .r — 6 ; we have

then
^n-l ^ p/ ^n-.2 ^ ^c. = (^ _6) (a?'^-^ ^ p//^n-.3

_j^
^^^J^

and, consequently,

a?" + P a?'*-^ + &LC. z= (a:— a) (a?— h) (a?^^ _|_ p// ^n-3^ ^^^ j
.

the equation proposed may, therefore, be verified in three ways,

namely, by making

x— a =1 0, or a;— J = 0, or a?"-^ ^ p^f
x""-^ + &c. == 0.

If the last of these equations has a root, c, its first member may
still be decomposed into two factors,

a? — c, a?«-3 + p/// x'^-'^ + &;c. = ;

we then have

a;« + P a?«-i + &c.

z=:{x— d){x— h) [x — c) {x""-^ + P'^^ a?«-4 + &c.)

;
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from which it is obvious, that the proposed equation may be veri-

fied in four ways, namely, by making

cc— a = 0,x— h=:0,x— c=:zO, x""-'^ + P''' x""-^ + he. = 0.

Pursuing the same reasoning, we obtain successively factors of

the degrees

n — 4, n — 5, 71 — 6, he.
;

and if each of these factors, being put equal to zero, is susceptible

of a root, the first member of the proposed equation is reduced to

the form

(a? — a) (x — h) {x — c) {x — d) (x — Z)

;

that is, it is decomposed into as many facto s of the first degree,

as there are units in the exponent n, which denotes the degree of

the equation.

The equation

x"" + Pj?«-i + &c. = 0,

may be verified in n ways ; namely, by making

X — a = 0, or a; — 5 == 0, or a; — c =z 0, or a? — c? = 0,

or lastly, x — Z = 0.

It is necessary to observe, that these equations are to be regard-

ed as true only when taken one after the other, and there arise

manifest contradictions from the supposition, that they are true at

the same time. In fact, from the equation x — a = 0, we obtain

(v =. a, while x — J = gives x =z b, results, which are incon-

sistent, when a and b are unequal quantities.

182. If the first member of the proposed equation,

a^n _|. Pa^n-1 _|_ ^c. =z 0,

be decomposed into ?i factors of the first degree,

X — a, X — b, X — c, X — d, x — I,

it cannot be divided by any other expression of this degree.

Indeed, if it were possible to divide it by a binomial x — «, differ-

ent from the former ones, we should have

x"" + P x""-^ + he. ={x — a) (o?"-^ + p x"""^+ &c.)

and, consequently,

{x — a) {x — b) {x — c) (x — d) (a? — I)

=: {x — a) (x''-^ + p ^^-^+ &;c.)

;

now by changing x into «, this becomes

Alg. 26
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(«- «) («-6) («]-^) («-^) («-

The second member vanishes by means of the factor a— cc, which

is nothing ; this is not the case with respect to the first, which is

the product of factors, all of which are different from zero, so long

as a differs from the several roots a, b, c, d , , , L The suppo-

sition we have made then is not true ; therefore, an equation of

any degree whatever does not admit of more binomial divisors of

the first degree, than there are units in the exponent denoting its

degree, and consequently cannot have a greater number ofroots.^

183. An equation regarded as the product of a number of

factors,

X — a, X — 6, X— c, X — rf, &ic.,

equal to the exponent of its degree, may take the form of the pro-

duct exhibited in art. 135., with this modification, that the terms

will be alternately positive and negative.

If we take four factors, for example, we have

x^ — ax^ -{- ab x^ — ab ex -}- ab cd =
— b x^ -[" a c x^ — ab dx
— c x^ -|~ cid x^ — a c dx
— dx^ + b c x^ — b cd X

+ bdx^

-^ cdx^

The second terms of the binomials x — a^ x— Z>, x — c, &c.

being the roots of the equation, taken with the contrary sign, the

properties enumerated in art. 135., and proved generally in art.

136., will, in the present case, be as follows.

The coefficient of the second term, taken with the contrary sign,

will be the sum of the roots ;

The coefficient of the third term will be the sum of the products of

the roots, taken two and two ;

The coefficient of the fourth term, taken with the contrary sign,

will be the sum of the products of the roots, multiplied three and

three, and so on, the signs of the coefficients of the even terms

being changed
;

* This demonstration is taken from the Annales de Mathematiques

published by M. Gergonne. See vol. iv, pp. 209, 210, note.
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The last term^ subject also to this law, will be the product of all

the roots.

Making, for example, the product of the three factors

X — 5, a? + 4, 07 + 3,

equal to zero, we form the equation

a;3 + 2 a;2 _ 22 o;— 60 = 0,

the roots of which are

+ 5,-4,-3;
we have for their sum

5 — 4 — 3 = — 2;
for the sum of their products, taken two and two, •

+5X— 4 + 5X— 3—4X — 3 =—20— 15+12z=— 23,

and for the product of the three roots,

+ 5x— 4X— 3 = 60.

In this way we form the coefficients, 2 — 23, — 60, changing the

signs of those for the second and fourth terms.

If we make the product of the factors

X — 2, X — 3, and a; + 5,

equal to zero, the equation thence arising

a;3 _ 1 9 07 + 30 z= p,

as it has no term involving x^, the power immediately inferior to

that of the first term, wants the second term; and the reason is,

that the sum of the roots, which, taken with the contrary sign,

forms the coefficient of this term, is here

2 + 3 — 5,

or zero, or in other words, the sum of the positive roots is equal to

that of the negative."^

184. We have proved (182), that an equation, considered as

arising from the product of several simple factors, or factors of the

first degree, can contain only as many of these factors, as there

are units in the exponent n denoting the degree of this equation
;

but if we combine these factors two and two, we form quantities of

the second degree, which will also be factors of the proposed

equation, the number of which will be expressed by

?i4=^) (140).

* See note at the end of this treatise.
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For example, the first member of the equation

x^ — ax^ -{- ab x^ — ab c x -^ ab cd =
— b x^ + acx^ — a b dx
— c x^ -j- adx^ — a c d X

— d x^ -^ b cx^ — b c dx
' +bdx''

-{- cd x^

being the product of

(x — a)x{oo — b)x{x — c) X (^ — d),

may be decomposed into factors of the second degree, in the six

following ways;

{x — a) (x — b) X {oc — c) {x — d)

{x — a) {x — c) X {^ — b) {x — d)

{x — a) {x — d) X (x — b) {x — c)

(x — b) (x — c) X {oo — a) {x — d)

{x — b) {x — d) X {x — a) {x — c)

{x — c) [x— d) X {x — a) (x — b)
;

whence it appears, that an equation of the fourth degree may have

six divisors of the second.

By combining the simple factors three and three, we form quan-

tities of the third degree for divisors of the proposed equation ;

for an equation of the degree 7i the number will be

njn^l) (n — 2)

1.2.3 "•

and so on.

Of Elimination among Equations exceeding the First Degree,

185. The rule given in art. 78., or the method pointed out in

art. 84., is sufficient in all cases, for eliminating in two equations

an unknown quantity, which does not exceed the first degree?

whatever may be the degree of the others; and the rule of art. 78.

is applicable, even when the unknown quantity is of the first degree

in only one of the proposed equations.

If we have, for example, the equations

ax^'\-bxy'\-cy^=z m^^

x^ -\- xy =1 71^,

taking, in the second, the value of ?/, which will be

n^^ — 3;2

y = —-—

r
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and substituting this value and its square, in the place of y and y^

in the first equation, we obtain a result involving only x,

186. If both of the proposed equations involved the [second

power of each of the two unknown quantities, the above method

could be applied in resolving only one of the equations, either with

respect to x or y.

Let there be, for example, the equations

a x^ -^ b X y -^^ cy^ =: m^,

x^+ y^zzzn^',

the second gives

Substituting this value of y, and its square in the first, we obtain

ax^d=.b X s/n^ -— x^ + c (n^— a;^) = m^.

Our purpose appears to be answered, since wej have arrived at a

result, which does not involve the unknown quantity y, but we are

unable to resolve the equation containing x, without reducing it to a

rational form, by making the radical sign, under which the unknown

quantity is found, to disappear.

It will be readily seen, that if this radical expression stood

alone in one member, we might make t!ie radical sign to disappear

by raising this member to a square. Collecting together all the

rational terms then in one member, by transposing the terras

±zb X \/n^— x^ and niP, we have

aa?2 + c(7i^ — X-) — m^ ==: ^ bx\/n^^~^*^

taking the square of each member we form the equation

-{•2acx^ {n^—x'')— 2am^-x^-—2cm^(ii^—x^-)] ^ {n-—x
),

which contains no radical expression.

The method, we have just employed for making the radical sign

to disappear, deserves attention, on account of the frequent occasion

we have to apply it ; it consists in insulating the quantity found

under the radical sign, and then raising the two members of the

proposed equation to the power denoted by the degree of this sign.

187. The complicated nature of this process, which increases

in proportion to the number of radical expressions, added to the

difficulty of resolving one of the proposed equations with refer-

ence to one of the unknown quantities, a difficulty, which is often

insurmountable in the present state of algebra, has led those, who

have cultivated this science, to seek a method of effecting the



206 Elements of Algebra.

elimination without this; so that the resolution of the equations

shall be the last of the operations required for the solution of the

problem.

In order to render the operation more simple, we reduce equa-

tions with two unknown quantities to the form of equations with

only one, by presenting only that, which we wish to eliminate.

If we have, for example,

x^ -^-axy-^-bx^icy^ -{' dy -{- e,

we bring all the terms into one member, and arrange them with

reference to x ; the equation then becomes

x^ + (ay + 6) cc— cy^ — dy— e=zO *

abridging this, by making

ay + b=:P, —cy^—dy— ezn Q,
we have

x^ +Px+ Q=:0.
The general equation of the degree m with two unknown

quantities must contain all the powers of x and y, which do not

exceed this degree, as well as those products, in which the sum of

the exponents of x and y does not exceed m } this equation then

may be represented thus
;

x'^^ {a+by)x'^-^+{c+dy+ey^)x'^-^+(,f+gy+hy^+ Icy^)x'^-^

+(P+?y+^2/' • • • +uy'^-^)x+f+q'y+rY . . . +v'y^=:0.

No coefficient is assigned to x^ in this equation, because we may

always, by division, free any term of an equation we please, from

the number, by which it is multiplied. Now if we make

a + by = P, c + dy + ey^=% f^gy + hy^+ky^=zR,

P + qy +uy'^-^= r, p' + q'y +v'y'^=:z U,

the above equation takes the following form,

x'^ + P a:'"-i+ q a;^-2^ ^ ^m-~3 ^Tx+ Uz=:0.

188. It should be observed, that we may immediately eliminate

X in the two equations of the second degree,

x^ +Px + q=zo, x^ + P'x + q' =zo,

by subtracting the second from the first. This operation gives

whence x = — jp^pj^;

substituting this value in one of the two proposed equations, the

first for example, we find
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{Q-Qr JP{Q-Q')
I o_o.

making the denominators to disappear, we have

{q-q'Y-P{P-P'){(i-Q;) + Q{P-P'? = o,

then developing the two last terms, and making the reduction

iq-q:r+{p-p'){pq'-qp') = o.

We have then only to substitute for P, Q, P\ and Q^, the partic-

ular values which answer to the case under consideration.

189. Before proceeding further, I shall show, how we may

determine, whether the value of any one of the unknown quanti-

ties satisfies at the same time the two equations proposed. In

order to make this more clear, I shall take a particular example
]

the reasoning employed will, however, be of a general nature.

Let there be the equations

^.3 ^ 3 ^2
2^

_|_ 3 ^ y2_ 98 =. (1),

cc^j^^xy —2y^ —lOiizO (2),

which we shall suppose furnished by a question, that gives y = 3.

In order to verify this supposition, we must substitute 3 in the

place of y, in the proposed equation ; we have then

a;3^ 9 ^2 ^27 a:— 98 = (a),

a?2^ i2a?— 28 = (b),

equations, which must present the same value of a:, if that, which

has been assigned to y, be correct. If the value of x be repre-

sented by a, the equation (a) and the equation (b) will, according

to what has been proved in art. 179., both of them be divisible

by X— a; they must, therefore, have a common divisor, of

which X— a forms a part ; and in fact, we find for this common

divisor x— 2 (48); we have therefore « = 2. Thus the value

y z= 3 fulfils the conditions of the question, and corresponds to

x = 2.

If there remained any doubt, whether or not the common divi-

sor of the equations (a) and (b) must give the value of a?, we

might remove it, by observing, that these equations reduce them-

selves to

(«2_}- 11 a: + 49) (a:— 2) = 0,

[x+U) (a;— 2)=0,
from which it is evident, that they are verified by putting 2 in the

place of X.

190. The method I have just explained, for finding the value of

0?, when that of y is known, may be employed immediately in the

elimination of x.
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Indeed, if we take the equations (1) and (2), and go through

the process necessary for determining whether they have a com-

mon divisor involving a?, instead of finding one, we arrive at a

remainder, which contains only the unknown quantity y and

numbers, that are given ; and it is evident, that if we put in the

place of 2/ its value 3, this remainder will vanish, since by the same

substitution, the equations (1) and (2) become the equations (a)

and (b), which have a common divisor. Forming an equation,

therefore, by taking this remainder and zero for the two members,

we express the condition, which the values of y must fulfil, in order

that the two given equations may admit, at the same time, of the

same value for cc.

The adjoining table presents the several steps of the operation

relative to the equations,

x^ + ^ x^ y + 3 X y^— 9S — 0,

x^ + 4xy —2y^ —10 = 0,

on which we have been employed in the preceding article. We
find for the last divisor,

(9 2/2 + 10).T—2y3_i0y— 98;
and the remainder, being taken equal to zero, gives

43 2/6 _^ 345 y4_ 19(30 ^3 ^ 759 y2 _ 294O y — 4302 = 0,

an equation, which admits, besides the value y = S given above,

of all the other values of y, of which the question proposed is sus-

ceptible.

The remainder above mentioned being destroyed, that preceding

the last becomes the common divisor of the equations proposed
}

and being put into an equation, gives the value o( x when that of y
is introduced. Knowing, for example, that y = S, we substitute

this value in the quantity

(9 2/^ + 10).r— 2 2/^ — 10 2/
— 985

then taking the result for one member, and zero for the other, we

have the equation of the first degree

9Kt— 182 = 0, or x = 2.

191. The operation to which the above equations have been

subjected, furnishes occasion for several important remarks.

First, it may happen that the value of y reduces the remainder

preceding the last to nothing ; in this case, the next higher re-

mainder, or that which involves the second power of x, becomes

the common divisor of the two proposed equations. Introducing

then into this the value of y, and putting it equal to zero,
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we have an equation of the second degree, involving only x, the

two values of which will correspond to the known value of y. If

this value still reduce to nothing the remainder of the second de-

gree, we must go back to the preceding, or that into which the

third power of x enters, because this, in the case under considera-

tion, becomes the common divisor of the two proposed equations

;

and the value of y will correspond to the three values of x. In

general, we must go back until we arrive at a remainder, which is

not destroyed by substituting the value of y.

It may sometimes happen, that there is no remainder, or that

the remainder contains only known quantities.

In the first case, the two equations have a common divisor

independently of any determination of y ; they assume then the

following form,

Px-D = o, qx D=:0,
D being the common divisor. It is evident, that we satisfy both

the equations at the same time, by making in the first place

D = 0; and this equation will enable us to determine one of the

unknown quantities by meaxis of the other, when the factor D
contains both ; but if it contains only given quantities and x, this

unknown quantity will be determinate, and the other will remain

wholly indeterminate. With respect to the factors, which do not

contain x, they are found by what is laid down in art. 50.

Next, if we make at the same time

P = o, q = o,

we have still two equations, which will furnish solutions of the ques-

tion proposed.

Let there be, for example,

{a X + b y — c) (mx + ny — d) =z 0,

{a^ X + b^y — &) (mx -]- ny — d) = ;

by supposing, first, the second factor, common to the two equa-

tions, to be nothing, we have with respect to the unknown quanti-

ties X and y only the equation

mx -\- ny — d = 0,

and in this view the question will be indeterminate ; but if we
suppress this factor, we are furnished with the equations

ax -]' by — c =z 0, a' x -\- b' y — c^ = 0,

or a a? + J y = c, a' 0? + 6^
2/ zz: c'

;

and in this case the question will be determinate, since we have as

many equations as unknown quantities.
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When the remainder contains only given quantities, the two

proposed equations are contradictory ; for the common divisor, by

which it is shown that they may both be true at the same time,

cannot exist, except by a condition which can never be fulfilled/^^

This case corresponds to that mentioned in art. 68., relative to

equations of the first degree."^

192. If then we have any two equations,

0)^ + P a?"^-i + q 0:^-2 + R ^^3 J^ Tx + V = 0,

^n ^ pi ^71-1 _|, q x"^^ + R x^"^ J^Tx + Z'=Oy

where the second unknown quantity, y, is involved in the coeffi-

cients, P, Q, &:c. P% q\ &c. in seeking the greatest common

divisor of their first members, we resolve them into other more

simple expressions, or come to a remainder independent of x,

which must be made equal to zero.

This remainder will form the final equation of the question

proposed, if it does not contain factors foreign to this question;

but it very often begins with polynomials involving y, by which the

highest power of x, in the several quantities, that have been suc-

cessively employed as divisors, is multiplied, and we arrive at a

result more complicated than that which is sought, should be. In

order to avoid being led into error with respect to the values of y

arising from these factors, the idea, which first presents itself, is,

to substitute immediately in the equations proposed each of the

values furnished by the equation involving y only ; for all the

values, which give a common divisor to these equations, necessa-

rily belong to the question, and the others must be excluded. It

will be perceived also, that the final equation will become incom-

* It will be readily perceived, by what precedes, that the problem

for obtaining the final equation from two equations with two unknown

quantities, is, in general, determinate ; but the same final equation

answers to an infinite variety of systems of equations with two un-

known quantities. Reversing the process, by which the greatest

common divisor of two quantities is obtained, we may form these

systems at pleasure ; but as this inquiry relates to what would be of

little use in the elementary parts of mathematics, and would lead me

into tedious details, I shall not pursue it here. Researches of this

nature must be left to the sagacity of the intelligent reader, who will

not fail, as occasion offers, of arriving at a satisfactory result.
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plete, if we suppress in the operation any factor involving y ; but

all these circumstances together occasion some inconvenience in

the application of the above method,^ and lead me to prefer the

method given by Euler, which I shall explain in the following

article.

193. Let there be the equations

x^ + P x^ + qx +R =zO,

^^ + P'x^ + q^x^ + Rx + S' =z 0;

representing by a? — a the factor, which must be common to bothc,

when y is determinate in a proper sense, we may consider the

first as the product of a? — a by the factor of the second degree,

x^ -{- px -{- q, and the second as the product o( x — « by the

factor of the third degree x^ -{- p^ x^ -{- q^ x -^ r'
^ p and q^ p\ q'

and r' being indeterminate coefficients. We have then

X^ + Px^+ qx-{-R:=L{x— a){x^J^ px + q),

x^+ P'x^ + q^x^ + Rx J^S' — {x— a) {x^ -{-p'x^ + q'% + r').

Exterminating the binomial (a? — «), in the same manner as an

unknown quantity of the first degree (84), we find

{x^^ + P^ + q^ + R){^'^ + P'^'' + 9.'^ +'^)
~ (^4 ^ p/ ^3 _|^ qx^ + Rx ~\^ S') {x^ + px+ q)^,

a result, which must verify itself without any particular value being

assigned to x y this cannot take place, however, unless the first

member be composed of the same terms as the second ; we must,

therefore, after performing the multiplications, which are indicated,

put the coefficients belonging to each power of x in one member,

respectively, equal to those belonging to the same power in the

other. In this way we obtain the following equations

;

P+p'=z:P^+p Rp'+qq'+Pr'=zS' +Rp+qq
Q+Pp/^-g/=:q+Rp+q Rq'+ qr'=zS'p+Rq

R^ qp^+Pq^+r':=R+^p+Rq Rr'=S'q.

As we have here six equations, and only five indeterminate quan-

tities, namely, p, q, y, ^S and r^, all of which are of the first

degree, these quantities may be exterminated ; we shall thus arrive

at an equation, which, involving only the quantities P, Q, R, P^,

* On this subject see a memoir of M. Bret, in the 15th number of

Journal de VEcole Polytechnique, also one of M. Lefebure, 3d num-

ber, vol, ii. of the Correspondance of the same school.
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Qf, R^, and S^, will express a condition necessarily implied in the

conditions of the question, and which, consequently, will be the

final equation in y."^

Should this equation be identical, it follows, that the proposed

equations have at least one factor of the form x — «, whatever y
may be ; on the contrary, if the final equation contain only known

quantities, the proposed equations are contradictory.

When the final equation takes place, we obtain the factor x— a

by dividing the first of the proposed equations by the polynomial

a?^ + P "^ + ? / we find for the quotient

x + P-p,
and neglect the remainder, because it must necessarily be reduced

to nothing, when we substitute in the place of y a value obtained

from the final equation. Putting the above quotient equal to zero,

we find

X =:j) — P,

and this value of x will be known, or at least will be expressed by

* The method of Euler, explained here, amounts to multiplying

each of the proposed equations by a factor, the coefficients of which

are indeterminate, putting the products equal, and disposing the

coefficients in such a manner, that the terms containing the unknown
quantity destroy each other. In this form it is presented in his

Introduction to the Analysis of Infinites, The exponent, which de-

notes the degree of the products, being designated by A;, that of the

factors is A; — m for the equation of the degree m, and k — n for that

of the degree n. The first term of each of these factors, having unity

for a coefficient, the one contains !<, — m indeterminate coefficients,

and the other h — n. The sum of the products contains a number h

of terms involving x ; but it is necessary to destroy A: — 1 terms only,

because that, which contains the highest power of i, vanishes of

itself. It follows from this, that the whole number 2 A: — m -—'n of

indeterminate coefficients must be equal to k — 1, and consequently

A: = 771 + n — 1 ; we must, therefore, multiply the equation of the

degree m by a factor of the degree n — 1, that of the degree w by a

factor of the degree m — 1, and put the products equal, term to term,

a method similar to that given in the text. It may be observed, that

this former method of Euler contains the germ of that developed by

Bezout in his Theorie dcs Equations Algebriqiies.
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means of y, if we substitute for p its value deduced from the equa-

tions of the first degree, formed above.

This expression assumes, in general, a fractional form, so that

M
we have a? = ^, or JVo? — M =z ; and it may be seen in this

case, that the values of y, which would cause M and JV to vanish

at the same time, would verify the preceding equation indepen-

dently of X ; this takes place in consequence of the fact, that by

means of these values, the proposed equations would acquire a

common factor of a degree above the first. It would not be diffi-

cult to go back to the immediate conditions in which this circum-

stance is implied ; but the limits I have prescribed to myself in the

present treatise do not permit me to enter into details of this kind.

194. Now let there be the equations

x^ + Pec + q = 0, ^2 ^ p/ 0? + Q' = ;

the factors, by which x — « is multiplied, will be here of the first

degree, or oc -}- p and x -^ p^ simply ; in this case,

R=iO, R = 0, S'=:0, q=:0, q' zizO, r" =zO,

and we have

P+/ r=p/+^ )
r i?—/ =zP — P'

Q + P/ z= Q^ + P> >or <P'p — Pp'=^Q—Q:
qf=qp S (Q'i^-Q/==o.

From the first two equations we obtain

(f_p^) P_(Q-Q^)

F- p — p'
—'

Substituting these values in the third, we have

(P-P') qp-iq- q') Q'= (P-P')^'Q-(Q-Q') Q
or (P- P') {pqf-qp') + iq- q;f = o.

Now if in the equation

X =zp — P;

we put in the place of p, its value found above, we have

* — p —p-
195. In order to aid the learner, I shall indicate the operations

necessary for eliminating x in the two equations

a?Jf.P3»Jf.qx-{-R = 0, a? {- P' x" -J^- q X + R' =z 0'
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In this case, we have

S' z=zO, r' = (193),

and are furnished with these five equations

;

P+P' =P' +P,
q+Pp^ + q^ =Q' +P^p + q,

R+qp' + Pq'^R + qp + P' q,

Rp'+qq'=zR p+ q^q,

Rq'=zR q,

which may take the following form,

p—f =:P— P^^

P^p-Pp^+ q-q' =q-q%
q'p— qp' + P' q— P q' = R— R%
Rp—Rp^+q^q^qq^=^0,

jR/ ^_ /J ^/ :z= 0.

We may, by the rules given in art. 88., obtain immediately from

any four of these equations, the values of the unknown quantities

Pj p^, q and q^ ; but the simple form, under which the first and the

last of the equations are presented, enables us to arrive at the

result, by a more expeditious method. In order to abridge the

expressions, we make

P—P'= e, q—q'z=ze\ R— R=ze'';

and proceed to deduce from the first and last of the proposed

equations,

P' = P— e, q'=-j^;

then substituting these values in the three others, and making the

denominator R to disappear, we have

{R—P)Rp + {R — R)q = R{e^ —Pe) . ..{^),

(Q'- Q) Rp + {RR-PR) q = R (e-- qe)... (b),

(R—R) Rp + {Rq^—qR) q^—R^e (c).

If now we obtain, from the equations (a) and (b), the values of p
and q (88), and suppress the factor jR, which will be common to

the numerators and the denominator, we have

— (e^ —P e){RF— PR')'—{R'--R'){e" — Q e)

— {P' ~P){^"— Q^)R— R{^''-P^) {Q'—Q)
^^ {P' ^P){RP'— PR)^{R— R') (Q'— Q) '

putting these values in the equation (c), we obtain a final equation,

divisible by R, and which may be reduced to
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(R/_ R) [(e'— Pe){RP'— P R') — {R— R') (e"— %)]
+ (Rq:-qR')l(P'-P){e"-qe)-{e'-Pe){q:-q)^
=— Rel{P'-P) {RP'-PR') ~{R- R') (Q'- Q)] ;

it only remains then to substitute for the letters e, e^, e^\ the quan-

tities they represent.

196. If we have the three unknown quantities x, y, and z, and

are furnished with an equal number of equations, distinguished

by (1), (2), and (3) ; in order to determine these unknown quan-

tities, we may combine, for example, the equation (1) with (2) and

with (3), to eliminate x, and then exterminate y from the two re-

sults, which are obtained. But it must be observed, that by this

successive elimination, the three proposed equations do not concur

in the same manner, to form the final equation; the equation (1)

is employed twice, while (2) and (3) are employed only once

;

hence the result, to which we arrive, contains a factor foreign to

the question (84). Bezout, in his Theorie des Equations, has

made use of a method, which is not subject to this inconvenience,

and by which he proves, that the degree of the final equation, re-

sulting from the elimination among any number whatever of com-

plete equations, containing an equal number of unknown quantities,

and quantities of any degrees ivhatever, is equal to the product of the

exponents, which denote the degree of these equations, M. Poisson,

has given a demonstration of the same proposition more direct

and shorter than that of Bezout ; but the preliminary information,

which it requires, will not permit me to explain it here ; it will be

found in the Supplement. At present, I shall observe simply,

that it is easy to verify this proposition in the case of the final

equations presented in articles 194. and 195. If we suppose the

proposed equations given in those articles to be complete, the

unknown quantity y enters of the first degree into P and P', of

the second degree into Q and Qf, of the third into R and R
;

hence it follows, that e will be of the first degree, e' of the second,

and e'' of the third, and that the terms of the highest degree found

in the products indicated in the final equation given in art. 194.,

will have 4, or 2 . 2, for an exponent, and those of the final equa^

tion art. 195., will have 9 or 3 . 3.
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Of Commensurable Roots and the equal Roots of JVumerical

Equations.

197. Having made known the most important properties of

algebraic equations, and explained the method of eliminating the

unknown quantities, when several occur, I shall proceed to the

numerical resolution of equations with only one unknown quantity,

that is, to the finding of their roots, when their coefficients are

expressed by numbers.*

I shall begin by showing, that when the proposed equation has

only whole numbers for its coefficients, and that of its first term is

unity, its real roots cannot be expressed by fractions, and conse-

quently can be only whole numbers, or numbers, that are incommen-

surable.

In order to prove this, let there be the equation

x^-{-P a:«-i + Q x"^^ + Ta: + C/ = 0,

in which we substitute for x an irreducible fraction t ; the equa-

tion then becomes
/7R fin—

I

fjM—

2

n

J^+^I^+Qf- + Tf+f7=0;
reducing all the terms to the same denominator, we have

a^j^P a^i b + Qa'^-s 62 -\-Ta J^-^ + Z76" = 0,

which is equivalent to

a^ J^b {Pa''-^ + q a^'-^b + T a b""-^ + Ub""'^ ) = 0.

The first member of this last equation consists of two entire parts,

one of which is divisible by b, and the other is not (98), since it is

supposed, that the fraction t is reduced to its most simple form,

or that a and b have no common divisor ; one of these parts cannot

therefore destroy the other.

198. After what has been said, we shall perceive the utility of

making the fractions of an equation to disappear, or of rendering

* There is no general solution for degrees higher than the fourth
;

properly speaking, it is only that for the second degree, which can

be regarded as complete. The expressions for the roots of equa.

tions of the third and fourth degree are very complicated, subject to

exceptions, and less convenient in practice than those, which I am

about to give ; I shall resume the subject in the Supplement.

Alg. 28
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its coefficients entire numbers, in such a manner, however, that

the first term may have only unity for its coefficient. This is

done by making the unknown quantity proposed, equal to a new

unknown quantity divided by the product of all the denominators of

the equation^ then reducing all the terms to the same denominator,

by the method given in art. 52.

Let there be, for example, the equation

^ ,
ax^ bx . c _

we take x =z —^— , and introducing this expression for x into the

proposed equation, we obtain*

as the divisor of the first term contains all the factors found in

the other divisors, we may multiply by this divisor and thijs re-

duce each term to its most simple expression ; we find then

y^ -i- a np y^ -\'b m^ np^y -\' cm^ n^ p^ zm 0.

If the denominators, m, 7i, p, have common divisors, it is only

necessary to divide y by the least number, which can be divided at

the same time by all the denominators. As these methods of

simplifying expressions will be readily perceived, I shall not stop to

explain them 5 I shall observe only, that if all the denominators

were equal to m. it would be sufficient to make x =z —,
^ m

The proposed equation, which would be in this case,

then becomes

and we have

^ ax^ bx c

yl +^ + ^4 + L = o,
w^ ' nr * m'- m^

y^ -{- ay^ -\-'bmy-\-m^c:=:zO.

It is evident, that the above operation amounts to multiplying

all the roots of the proposed equations by the number m, since

y •

0? = — gives y =.mx,

199, Now since, if a be die root of the equation

we have

(7=— a'*— Pa'^-i — Qa^-'^ — ra(179).
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it follows, that a is necessarily one of the divisors of the entire

number U, and consequently, when this number has but few divi-

sors, we have only to substitute them successively in the place of

0?, in the proposed equation, in order to determine, whether or not

this equation has any root among whole numbers.

If we have, for example, the equation

^3 _ 5 ^2 ^ 27 a; — 38 = 0,

as the numbers

1, 2, 19, 38,

are the only divisors of the number 38, we make trial of these,

both in their positive and negative state ; and we find, that the

whole number -f" ^ only satisfies the proposed equation, or that

^ zn 2. We then divide tlie proposed equation by a? — 2
;
put-

ting the quotient equal to zero, we form the equation

a;^_4a; + 19 = 0,

the roots of which are imaginary ; and resolving this, we find that

the proposed equation has three roots,

X = 2, X ='2 + V— 15, X ^ 2 — V— 15.

200. The method just explained, for finding the entire number,

which satisfies an equation, becomes impracticable, when the last

term of this equation has a great number of divisors ; but the

equation

U= — a- — P a'^-' — q a^'-^ — T a,

furnishes new conditions, by means of w^hich the operation may be

very much abridged. In order to make the process more plain, I

shall take, as an example, the equation

^,4 j^ p^s ^ qx^ + Rx + S = 0.

The root being constantly represented by a, we have

a^ ^Pa^ + qa^ + I^(^ + S = 0,

S = — R a — qa^ — P a^ — a\

from which we obtain

^zzz — iJ— qa — Pa^ — a^

It is evident from diis last equation, diat - must be a whole number.

Bringing R into the first member, w^e have

^ + il:zz_ qa—Pa — a^^,
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abridging the expression by making - + R=z R, and dividing the

two members of the equation

R =z— qa — Pa^ — a^

by a, we have

a ^
R'

whence we conclude, that — must also be a whole number.
a

R'
Transposing Q, and making f- Q zz Q^, then dividing the

two members by a, we obtain

a

Q'
whence we infer, that — must be a whole number.

a

Lastly, bringing P into the first member, making — + J' = P'i

and dividing by a, we have

^ = -1.
a

Putting together the above mentioned conditions, we shall per-

ceive that the number a will be the root of the proposed equation,

if it satisfy the equations

a ' '

P'

in such a manner, as to make R\ Q', and P' whole numbers.

Hence it follows, that in order to determine, whether one of the

divisors a of the last term S can be a root of the proposed equa-

tion, we must,

1st. Divide the last term by the divisor a, and add to the quotient

the coefficient of the term involving x
;

2d. Divide this sum by the divisor a, and add to the quotient the

coefficient of the term involving x^

;
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3d. Divide this sum by the divisor a, and add to the quotient the

coefficient of the term involving x^
;

4th. Divide this sum by the divisor a, and add to the quotient

unity, or the coefficient of the term involving x^ ; the result will

become equal to zero, if a is, in fact, the root.

The rules given above are appHcable, whatever be the degree

of the equation ; it must be observed, however, that the result will

not become equal to zero, until we arrive at the first term of the

proposed equation.*^

201. In applying these rules to a numerical example, we may

conduct the operation in such a manner as to introduce the several

trials with all the divisors of the last term, at the same time.

For the equation

x^ — 9 x^ + 2^x^ — 20 X + 15 zziO,

the operation is, as follows

;

+ 15,+ 5,+ 3,+ 1,— 1,— 3,— 5,-15,
+ 1,+ 3, + 5, + 15, — 15, — 5,— 3,— 1,

-. 19, — 17, — 15, _ 5, — 35, — 25, — 23, — 21,

— [>,— 5, + 35,

+ 18, + 18, + 58,

+ 6, + 18, — 58,

_ 3, + 9,-67,
— 1,+ 9, + 67,

0.

All the divisors of the last term 15 are arranged, in the order of

magnitude, both with the sign + and — , and placed in the same

line ; this is the line occupied by the divisors a.

The second line contains the quotients arising from the number

15, divided successively by all its divisors; this is the hne for the

. . S
quantities -

.

* It would not be difficult to prove by means of the formula for the

J^ III Ql
quotients given in art. 180., that the quantities - , — , — , taken with

a a a

the contrary sign, and with the order inverted, are the coefficients of

the quotient arising from the polynomial

x^-\-rx^+ Qx^ + R^ + S
divided by a; — «, and which is, consequently,

a a a*
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The third line is formed by adding to the numbers found in the

preceding the coefficient — 20, by which x is muUiplied ; this is

Of

the line for the quantities R z=z - + jR.

The fourth line contains the quotients of the several numbers ia

the preceding, divided by the corresponding divisors ; this is the

line for the quantities — . In forming this line, we neglect all the

numbers, which are not entire.

The fifth line results from the numbers, written in the preceding,

added to the number 23, by which x^ is multiphed ; this line con-

tains the quantities Q^.

The sixth line contains the quotients arising from the numbers in

the preceding, divided by the corresponding divisors ; it compre-

hends the quantities —

.

The seventh line comprehends the several sums of the numbers

in the preceding, added to the coefficient — 9, by which x^ is

Q'
multiplied ; in this line are found the quantities — + P.

Lastly, the eighth line is formed, by dividing the several numbers

in the preceding by the corresponding divisors ^ it is the line for

p—. As we find — 1 only in the column, at the head of which -f-3

stands, we conclude, that the proposed equation has only one com-

mensurable root, namely, +3 ; it is, therefore, divisible by a?— 3.^

The divisors + 1 and — 1 may be omitted in the table, as it is

easier to make trial of them, by substituting them immediately in

-the proposed equation.

202. Again, let there be, for example,

a>3 _ 7 ^2 _[_ 30 _, 0.

Having ascertained, that the numbers -f- 1 and — 1 do not

satisfy this equation, we form the table subjoined, according to the

preceding rules, observing that, as the term involving x is wanting

in this equation, x must be regarded as having for a coefficient;

we must, therefore, suppress the third line, and deduce the fourth

immediately from the second.

* Forming the quotient according to the preceding note, we find
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+36, -I- 18,+ 12,+ 9,+ 6,+ 4,+ 3,+ 2,— 2,— 3,—4,-0, — 9,—12,-18, -36
+ 1,+ 2,+ 3,+ 4,+ G,+ 9,+ 12,+ 18,— 18,— 12,—9,-6,— 4,— 3,- 2,- 1

t^^iiiiiitL,l,t¥****tt**'t'*'¥*'¥**************************'i^*** *********

+ l,+4, + 9,+9, + 4, + l,

— 6,— 3, + 2,+2,— 3,— 6,

— 1,-1, _i, + i,+ i,

0, 0, 0.

We find in this example three numbers, which fulfil all the

conditions, namely, + 6? + 3, and — 2. Thus we obtain, at the

same time, the three roots, which the proposed equation admits

of; we conclude then, that it is the product of three simple factors,

X— 6, 0?— 3, and x -\- 2.

203. It may be observed, that there are literal equations, which

may be transformed, at once, into numerical ones.

If we have, for example,

2^3 _|- 2 p i/2_ 33 p2 y _j_ 14^3 __.
0,

making y =zp x,we obtain

p^x^ + 2p^x^— dSp^x+ 14p^=i 0,

a result, which is divisible by p^, and may be reduced to

x^-^2 0.2—33 .T + 14 = 0.

As the commensurable divisor of this last equation is a? + 7,

which gives x =. — 7, we have

y- — ^P'
The equation involving y is among those which are called

homogeneous equations, because taken independently of the nu-

merical coefficients, the several terms contain the same number of

factors.*

204. When we have determined one of the roots of an equation,

we may take for an unknown quantity the difference between this

root and any one of the others ; by this means we arrive at an

equation of a degree inferior to that of the equation proposed, and

which presents several remarkable properties.

Let there be the general equation

a?'" + P a?'»-i + Qa?^-2^ jR.T^-^ + I"^ + C/"=0,

and let a, b, c, d, &lc. be its roots ; substituting a + y in the place

of 0?, and developing the powers, we have

* For a more full account of the commensurable divisors of equa-

tions, the reader is referred to the third part of the Elemens d^AIge-

bre of Clairaut. This geometer has treated of literal as well as

numerical equations.
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+fa"-i+(OT—l)Fa'»-gy+ ^'"~^^^'"~-W-yH—

•

+21 a-^+^m—3)jR a'"-4y+(^=:?K!5=i)iJa'»-5/+...

=0.

+T« +^2/
+^
The first column of this result, being similar to the proposed

equation, vanishes of itself, since a is one of the roots of this

equation ; we may, therefore, suppress this column, and divide all

the remaining terms by y ; the equation then becomes

+ (;^_ 1) P am-2 ^ {m^l){m^ p ^^^^ ^^^^

+ {m— 2) Q ft-^ + (w—2)(w—3) ^ ^„_4^^^ _^___ j^_^^

+ (m- 3) i? a-* + (^!=?) Kn!) ^ ^„_,^ _^_ _

+ T'
. .

This equation has evidently for its m— 1 roots

y = J — a, 2/ =^ c— «, y^=^d— a &;c.

I shall represent it by

•^+1 2/ +^f .. + r-' = (J),

abridging the expressions, by making

ma^-^ + (m— l)Pa^-2 + (m— 2) Q a^-^ + T ~ ^,

m{m—\) a^-^ J^ {m — I) {m— 2) P a^-^ _. 2?,

&c.,

and I shall designate by V the expression

a^ _j_ p«m-i _|_ Q ^m-2 + r« + [7.

205. If the proposed equation has two equal roots ; if we have?

for example, a = b, one of the values of y, namely, I— a, be-

comes nothing ; the equation {d) will therefore be verified, by

supposing !/ = ; but upon this supposition all the terms vanish,

except the known term A ; this last must, therefore, be nothing of
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itself; the value of a must, therefore, satisfy, at the same time, the

two equations

V=0 and ^=0.
When the proposed equation has three roots equal to a, namely,

a = b =1 c, two of the roots of the equation {d) become nothing,

at the same time, namely, b— a and c— a. In this case the

equation (d) will be divisible twice successively by y— 0(179)

or y ; but this can' happen, only when the coefficients A and B
are nothing ; the value of a must then satisfy, at the same time, the

three equations

F=0, A = 0, B=zO.

Pursuing the same reasoning, we shall perceive, that when the

proposed equation has four equal roots, the equation [d) will have

three roots equal to zero, or will be divisible three times successively

by y ; the coefficients. A, B, and C, must then be nothing, at the

same time, and consequently the value of a must satisfy at once the

four equations,

V=2 0, AzzzO, Bz=iO, C—0,
By means of what has been said, we shall not only be able to

ascertain, whether a given root is found several times among the

roots of the proposed equation, but may deduce a method of de-

termining, whether this equation has roots repeated, of which we

are ignorant.

For this purpose, it may be observed, that when we have

•^ = 0, or

7/ia^-i+(m— l)Pa"^-2 + (m— 2) Q «"»-3
. ..+ r=0,

we may consider a as the root of the equation

mx'^-^+ {m—l)Px'^-^+ {m— 2) qaf""^. . . + T=0,
X representing, in this case, any unknown quantity whatever; and

since a is also the root of the equation F =z 0, or

it follows (189), that x— a is a factor common to the two above

mentioned equations.

Changing in the same manner a into x in the quantities, jB, C,

&:c. the binomial x— a becomes likewise a factor of the two

new equations, B ^ 0, C r=: 0, &:c. if the root a reduces to nothing

the original quantities, B, C, he.

What has been said with respect to the root a, may be applied to

every other root, which is several limes repeated ; thus, by seeking,

4lg. 39
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according to the method given for finding the greatest common

divisor, the factors common to the equations,

F"— 0, ^zizO, i? = 0, (7=:0, &iC.,

we shall be furnished with the equal roots of the proposed equation,

in the following order
;

The factors common to the first two equations only, are twice

factors in the equation proposed ; that is, if we find for a common

divisor o( T^=zO and A = 0, an expression of the form (a? = «)

{x— 6), for example, the unknown quantity oc will have two values

equal to a, and two equal to 6, or the proposed equation will have

these four factors,

{x— «), {x— a), {x — 6), {x— 6).

The factors common, at the same time, to the first three of the

above mentioned equations form triple factors in the proposed

equation ; that is, if the former are presented under the form

(x— a) [x— 6), the latter will take the form, {x— «)^ (a— 6)^,

This reasoning may easily be extended to any length we please.

206. It may be remarked, that the equation .^ = 0, which, by

changing a into x, becomes

m, a;"^i 4- (^m— 1) Po:"^-^ + (^— 2) Q x'""-^ . . + T = 0,

is deduced immediately from the equation p^z=i 0, or from the

proposed equation,

by multiplying each term of this last by the exponent of the power

of Xj which it contains, and then diminishing this exponent by

unity. We may remark here, tliat the term U, which is equiva-

lent to Z7x x^, is reduced to nothing in this operation, where it

is multiplied by 0. The equation B =: is obtained from A=:0,

in the same manner as ./Z := is deduced from V = ; C =
is obtained from J5 = 0, in the same manner as this from A =z Q,

and so on.*

* It is shown, though very imperfectly, in most elementary trea-

tises, that the divisor common to the two equations F= and ^=
contains equal factors raised to a power less by unity than that of

the equation proposed ; this may be readily inferred from what pre-

cedes; but for a demonstration of this proposition we refer the reader

to the Supplement, where it is proved in a manner, which appears to

me to be simple and new.
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207. To illustrate what has been said, by an example, I shall

take the equation

x^— 13 x"^ + C^lx^— 171.x- + 216 a?— 108 = 0;

the equation A =: becomes, in this case,

dx^— 52x^ -}- 201 x^ — 342 0? + 216 = ;

the divisor common to this and the proposed equation Is

^3 _ 8^2 ^ 21a?— 18.

As this divisor is of the third degree, it must itself contain several

factors ; we must therefore seek, whether it does not contain some

that are common to the equation B i=: 0, which is here

20 x^ — 15G X- + 402 0? — 342 = 0.

We find, in fact, for a result x — 3 ; the proposed equation then

has three roots equal to 3, or admits of (x — 3)^ among the num-

ber of its factors. Dividing the first common divisor by a?— 3, as

many times as possible, that is, in this case twice we obtain x — 2.

As this divisor is common only to the proposed equation, and to the

equation .y^ = 0, it can enter only twice into the proposed equa-

tion. It is evident then, that this equation is equivalent to

{x — Sy [x — 2f = 0.

208. As the equation [d) gives the difference between b and the

several other roots, when b is substituted for a, the difference

between c and the others, when c is substituted for a, he, and

undergoes no change in its form by these several substitutions,

retaining the coefficients belonging to the equation proposed, it may-

be converted into a general equation, which shall give all the

differences between the several roots combined two and two. For

this purpose, it is only necessary to eliminate a by means of the

equation

^n _|_ p ^m-1 _|_
Q^m-2 J^ T a + U =z ;

for the result being expressed simply by the coefficients, and ex-

hibiting the root under consideration in no form whatever, answers

alike to all the roots.

It is evident, that the final equation must be raised to the degree

m{m — 1) ; for its roots

a — b, a — c, a — d, &c.

b — a, b — c, b — d, &c.

c — a, c — J, c — d, &c.
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are equal in number to the number of arrangements, which the m
letters, a, 6, c, &z;c. admit of when taken two and two. Moreover,

since the quantities

a— h and h— a, a— c and c— «, h— c and c— h^ &;c.

differ only in the sign, the roots of the equation are equal, when

taken two and two, independently of the signs ; so that if we have

y = a, we shall have, at the same time, 2/ = — «. Hence it fol-

lows, that this equation must be made up of terms involving only

even powers of the unknown quantity ; for its first member must

be the product of a certain number of factors of the second degree

of the form

y^—a^=^{y — a){y + a) (184);

it will, therefore, itself be exhibited under the form

y^rt J^ py 2n-.2 ^ ^
^2u-4 ^ f y^ ^ u =z 0.

If we put y^ z=i z, this becomes

z^ -j- pz""-^ + q z«-^ ^ tz + u =: 0;

and as the unknown quantity z is the square of y, its values will be

the squares of the differences between the roots of the proposed

equation.

It may be observed, that as the differences between the real roots

of the proposed equation are necessarily real, their squares will be

positive, and consequently the equation in z will have only positive

roots, if the proposed equation admits of those only which are real.

Let there be, for example, the equation

putting a? = a + y, we have

a^ +2d''y + Say^ + y^)
_7a — 7!/ }=iO.

Suppressing the terms a^ — 1 a -\- 7, which, from their identity

with the proposed equation, become nothing when united, and

dividing the remainder by y, we have

Sa^ + 3ay + y^—7 = 0;

eliminating a by means of this equation and the equation

a^ — 7a + 7=z0,

we have

y6 _ 42 y4 ^ 441 2^2 _ 49 ^ ;
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putting z = y^, this becomes

z^ — 42z^ + 441 z — 49=0.

209. The substitution of a + y in the place of x in the equation

x'^ + P x"^'^ + Qa?'"-^ ^ J7 _. Q (204),

is sometimes resorted to also in order to make one of the terms of

this equation to disappear. We then arrange the result with refe-

rence to the powers of y, which takes the place of the unknown

quantity x, and consider a as a second unknown quantity, which is

determined by putting equal to zero the coefficient of the term we
wish to cancel ; in this way we obtain

y^ + may'^-^ + ^i^LZzD ^^ z^^-^ -j- a'«

-I- Py^-1 _|_ (to — 1) Pay""-^ + Pa™-! 1 _ „

'+'u'

If the term we would suppress be the second, or that which

involves y*""~^, we make w a + P = 0, from which we deduce

F
a =• . Substituting this value in the result, there remain only

the terms involving

Hence it follows, that we make the second term of an equation to

disappear, by substituting for the unknown quantity in this equation

a new unknown quantity, united with the coefficient of the second

term taken with the sign contrary to that originally belonging to it,

and divided by the exponent of the first term.

Let there be, for example, the equation

a?3-|-6a? — 3a7 + 4 = 0;

we have by the rule

^ = y — I = 2/— 2;

substituting this value, the equation becomes

+ 62/^— 24y + 24l
- 3y+ 6f-^'

+ ^J
which may be reduced to

3/3— 15jf + 26 = 0,

in which the term involving f does not appear. We may cause
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the third term, or that involving y'^~^, to disappear by putting equal

to zero the sum of the quantities, by which it is multiplied, that is,

by forming the equation

^-^«^ + («-i)P«+Q = o.

Pursuing this method, we shall readily perceive, that the fourth

term will be made to vanish by means of an equation of the third

degree, and so on to the last, which can be made to disappear

only by means of the equation

a^ + P a"^-i + q a^-^ + [7=0,

perfectly similar to the equation proposed.

It is not difficult to discover the reason of this similarity. By
making the last term of the equation in y equal to zero, we sup-

pose, that one of the values of this unknown quantity is zero ; and

if we admit this supposition with respect to the equation x =: y -\- a,

it follows that x = a; that is, the quantity a, in this case, is neces-

sarily one of the values of x.

210. We have sometimes occasion to resolve equations into

factors of the second and higher degrees. I cannot here explain

in detail the several processes, which may be employed for this

purpose ; one example only will be given.

Let there be the equation

^ _ 24 a;3 + 12 0?^ — 1 1 jt + 7 =z 0,

in which it is required to determine the factors of the third de-

gree ; I shall represent one of these factors by

x^ -^ p x'^ -}- q X -\- r,

the coefficients p, g, and r, being indeterminate. They must be

such, that the first member of the proposed equation will be ex-

actly divisible by the factor

x^ -]- p x^ -^ q X -\- r,

independently of any particular value of x ; but in making an actual

division, we meet with a remainder

_ (p3 _ 2 p g _ 24p + r — 12)a?2

— {P^ 9 — P ^ — 9^ — 24 <jr -[- 11)^

— {p^r — qr — 24 r — 7),

an expression, which must be reduced to nothing, independently of

X, when we substitute for the letters, p, q, and r, the values that

answer to the conditions of the question. We have then
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f — 2pq — 2Ap + r — 12 i= 0,

2^ q — pr — q^ — 24: q -\- 11 =: 0,

p^ r — qr — 24 r — 7 = 0.

These three equations furnish us with the means of determining

the unknown quantities, p, q, and r ; and it is to a resolution of

these, that the proposed question is reduced.

Of the Resolution of JVumerical Equations by Approximation,

211. Having completed the investigation of commensurable

divisors, we must have recourse to tlie methods of finding roots by

approximation, which depend on the following principle

;

When we arrive at two quantities^ ivhich, substituted in the place

of the unknown quantity in an equation, lead to two results with

contrary signs, ive iriay infer, that one of the roots of the proposed

equation lies between these two quantities, and is consequently real.

Let there be, for example, the equation

a;3_i3a;2-f- 7^— 1 z= 0;

if we substitute, successively, 2 and 20 in the place of x, in the

first member, instead of being reduced to zero, this member
becomes, in the former case, equal to — 31, and in the latter, to

-|- 2939 ; we may tlierefore conclude, that this equation has a

real root between 2 and 20, that is, greater than 2 and less

than 20.

As there will be frequent occasion to express this relation, I

shall employ the signs > and <, which algebraists have adopted

to denote the inequality of two Uaagiiitudes, placing the greater of

two quantities opposite the opening of the lines, and the less against

the point of meeting. Thus I shall write

0? ^ 2, to denote, that x is greater than 2,

X <^ 20, to denote, that x is less than 20.

Now in order to prove what has been laid down above, we may
reason in the following manner. Bringing together the positive

terms of the proposed equation, and also those which are negative,

we have

oc^ ^7x — (13 o:^ + 1),

a quantity, which will be negative, if we suppose x z=z 2, because,

upon this supposition,

x'^ + 7 X <i 13.T^ + 1,
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and which becomes positive, when we make x = 20, because,

in this case,

x^ + 7x^ iSx^ + I.

Moreover, it is evident, that the quantities

x^ + lx and 13^^+1,

each increase, as greater and greater values are assigned to x, and

that, by taking values, which approach each other very nearly, we
may make the increments of the proposed quantities as small as

we please. But since the first of the above quantities, which was

originally less than the second, becomes greater, it is evident, that

it increases more rapidly than the other, in consequence of which

its deficiency is made up, and it comes at length to exceed the

other ; there must, therefore, be a point at which the two magni-

tudes are equal.

The value of x, whatever it be, which renders

x^+7 X = }3x^ + I,

and such a value has been proved to exist, gives

x^ +1 X— (13 0^2 + 1) = 0,

or x^— ISx^ + 1x — l = 0,

and must necessarily, therefore, be the root of the equation pro-

posed.

What has been shown with respect to the particular equation

^3_ 13^2 _j_ 7^ _ 1 --.
0,

may be affirmed of any equation whatever, the positive terms of

which I shall designate by P, and the negative by JV. Let a be

the value of a;, which leads to a negative result, and b that which

leads to a positive one ; these consequences can take place only

upon the supposition, that by substituting the first value, we have

P < JV, and by substituting the second, P > A*; P, therefore,

from being less, having become greater than A'*, we conclude as

above, that there exists a value of x, between a and 6, which gives

* The above reasoning, though it may be regarded as sufficiently

evident, when considered in a general view, has been developed by

M. Encontre in a manner, that will be found to be useful to those,

who may wish to see the proofs given more in detail.

1. It is evident, that the increments of the polynomials P and N
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The statement here given seems to require, that the values as-

signed to X should be both positive or both negative, for if they

may be made as small as we please. Let

P — « a;"» + <J a:** + d x9,

m being the highest exponent of 2; ; if we put a -\- y in the place pf a;,

this polynomial takes the form

A + By + Cy^ + Ty^,
the coefficients, J., J5, C, . . . . T, being finite in number and having

a finite value ; the first term A will be the value the polynomial P
assumes, when x =1 a ; the remainder,

By + C y"^
, . . . + Ty^ ^ y {B + Cy , , . . Ty^-^),

will be the quantity, by which the same polynomial is increased when

we augment by y the value x z=z a. This being admitted, if S desig-

nate the greatest of the coefficients, B, C, , , . . T, we have

B + Cy.,,.+ Tf--i < ^(1 + 3^ . . . . + yrn-l)
;

now

l+y....+y'»-i = l^"- (158);

therefore,

and, consequently, the quantity by which the polynomial P is increas-

S y (i — y^)
ed, will be less than any given quantity m, if we make —^ ^

Sy
less than this last quantity ; this is effected by making -—— z=z m,

because, in this case,= y ——— being <^ 1, the quantity

—

— ^—

,

o --[- ?n 1 — y
Sy Sy"^^

equal to -

—

, will necessarily be less than the quantity w,

which is indefinitely small.

2. If we designate by h tlie increment of the polynomial P, and by

k that of the polynomial N, the change, which will be produced in

the value of their difterence, will be h — k, and may be rendered

smaller than a given quantity, by making smaller than this sam^

quantity the increment, which is the greater of the two ; we may,

therefore, in the interval between x zzz a and x ;= b, take values,

which shall make the diflference of the polynomials P and N change

by quantities as small as we please, and since this difference passes in

this interval from positive to negative, it may be made to approach as

near to zero as we choose. See Annales dc 3IaiJiematiques pures et

appliquees, published by M. Gergonne, vol. iv, p. 210»

A^. 30
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have different signs, that which is negative produces a change in

the signs of those terms of the proposed equation, which contain

odd powers of the unknown quantity, and, consequently, the ex-

pressions P and JV are not formed in the same manner, when we

substitute one value, as when we substitute the other. This diffi-

culty vanishes if we make x =: 0; in this case, the proposed equa-

tion reduces itself to its last term, which has necessarily a sigw

contrary to that of the result arising from the substitution of one or

the other of the above mentioned values. Let there be, for exam-

ple, the equation

a;4 _ 2 a?3 — 3 0:2 — 15 0? — 3 = 0,

the first member of which, when we put

X =z — 1 and X =: 2,

becomes -{- 12 and — 45. If we suppose x =i 0, this member is

reduced to — 3 ; substituting, therefore,

X = and x = — 1,

we arrive at two resuhs with contrary signs ; but putting — y in

the place of x, the proposed equation is changed to

y' + 2y^ — 3y^+ 152/ — 3 = 0,

and we have

P=:y^ + 2y^+ny, JV=32/^ + 3,

whence

P < JV, when ^ = 0,

P> JV, wheny = 1.

Reasoning as before, we may conclude, that the equation in y has

a real root, found between and -{- 1 > whence it follows, that the

root of the equation in x lies between and — 1, and, conse-

quently, between + ^ and — 1.

As every case the proposition enunciated can present, may be

reduced to one or the other of those which have been examined,

the truth of this proposition is sufficiently established.

212. Before proceeding further, I shall observe, that whatever

he the degree of an equation, and whatever its coefficients, we may

always assign a number, which, substituted fon the unknown quan-

tity, will render the first term greater than the sum of all the others.

The truth of this proposition will be immediately apparent from

what has been intimated of the rapidity, with which the several

powers of a number greater than unity increase (126) ; since the

highest of these powers exceeds those below it more and more in
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proportion to the increased magnitude of the number employed, so

that there is no limit to the excess of the first above each of the

others. Observe, moreover, the method by v/hich we may find a

number that fulfils the condition required by the enunciation.

It is evident, that the case most unfavorable to the supposition

is that, in which we make all the coefficients of the equation nega-

tive, and each equal to the greatest, that is, when, instead of

we take

x'^— Sic'^^—Sx'^^ — Sx— S=0,
S representing the greatest of the coefficients, P, Q, Tj U.

Giving to the first member of this equation the form

x"^— S {x"^-^ + x"^-^ + 1),

we may observe, that

x^-^ + x"^-^ + 1= =- (158) ;

the preceding expression then may be changed into

x"^ 5^ r-^, or mto x"^ H -.
X — 1' X — l»a;—

1

If we substitute M for x, this becomes

a quantity, which evidently becomes positive, if we make

M— 1

Now if we divide each member of this equation by JW"*, we have

S
1 = M- -^ or M =2 S + i.

By substituting therefore for x the greatest of the coefficients

found in the equation, augmented by unity, we render the first term

greater than the sum of all the others.

A smaller number may be taken for M, if we wish simply to

render the positive part of the equation greater than the negative

;

for to do this, it is only necessary to render the first term greater

than the sum arising from all the others, when their coefficients are

each equal, not to the greatest among all the coefficients but to the
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greatest of those which are negative ; we have, therefore, merely to

take for Jifthis coefficient augmented by unity.

^

Hence it follows, that the positive roots of the proposed equa-

tion are necessarily comprehended within and >S + 1.

In the same way we may discover a limit to the negative roots

;

for this purpose we must substitute — y for x, in the proposed

equation, and render the first term positive, if it becomes negative

(178), It is evident, that by a transformation of this kind, the

positive values of y answer to the negative values of x, and the

reverse. I(R be the greatest negative coefficient after this change,

jR + 1 will form a limit to the positive values of y ; consequently

— jR — I will form that of the negative values of x.

Lastly, if we would find for the smallest of the roots a limit

approaching as near to zero as possible, we may arrive at it by

substituting - for x in the proposed equation, and preparing the

equation in y, which is thus obtained, according to the directions

given in art. 178. As the values of y are the reverse of those of

X, the greatest of the first will correspond to the least of the second,

and, reciprocally, the greatest of the second to the least of the first.

If, therefore, S' + 1 represent the highest limit to the values of y,

that is, if

y<s^ + h
which gives

l<S' + i,

we shall have, successively,

l<(S'+l):r,^L_<^.

Indeed, it is very evident, that we may, without altering the

relative magnitude of two quantities separated by the sign <; or

]>, multiply or divide them by the same quantity, and that we
may also add the same quantity to or subtract it froni each side of

the signs <^ and >, which possess, in this respect, the same pro-

perties as the sign of equality.

* In the Risohition des equations numeriques, by Lagrange, there

are formulas, which reduce this number to narrower limits, but what
has been said above is sufficient to render the fundamental proposi-

tions for the resolution of numerical equations independent of the

Consideration of infinity.
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213. It follows from what precedes, that every equation of a

degree denoted by an odd number has necessarily a real root affected

with a sign contrary to that of its last term; for if we take the

number M such, that the sign of the quantity

M^ + PM^-"^ + qM"'-^- + TM'± U,

depends solely on that of its first term Jlf'% the exponent m being

an odd number, the term M^ will have the same sign as the num-

ber M (128). This being admitted, if the last term U has the

sign +5 and we make a? r= — M, we shall arrive at a result

affected with a sign contrary to that, which the supposition of

X =z would give; from which it is evident, that the proposed

equation has a root between and — M, that is, a negative root.

If the last term U has the sign — , we make x =z -\- M ; the

result will then have a sign contrary to that given by the supposi-

tion of 0? = 0, and in this case, the root will be found between

and -j- -^j ^hat is, it will be positive.

214. When the proposed equation is of a degree denoted by

an even number, as the first term M"^ remains positive, whatever

sign we give to M, we are not, by the preceding observations,

furnished with the means of proving the existence of a real root,

if the last term has the sign +? since, whether we make x =z 0,

or ^ = zfc M, we have always a positive result. But when this

term is negative, we find, by making

X= +M, A? iz: 0, X=:— M,

three results, affected respectively with the signs +, —, and -f-,

and, consequently, the proposed equation has, at least, two real

roots in this case, the one positive, found between M and 0, the

other negative, between and — M; therefore, every equation of

an even degree, the last term of which is negative, has at least two

real roots, the 07ie positive and the other negative,

215. I now proceed to the resolution of equations by approxi-

mation ; and in order to render what is to be offered on this

subject more clear, I shall begin with an example.

Let there be the equation

the greatest negative coefficient found in this equation being — 4,

it follows (212), that the greatest positive root will be less than

5. Substituting — y for x, we have

2/^ + 42/3 + 32/ -I- 27 = 0;
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and as all the terms of this result are positive, it appears, that

y must be negative ; whence it follows, that x is necessarily posi-

tive, and that the proposed equation can have no negative roots 5

its real roots are, therefore, found between and -j- 5.

The first method, which presents itself for reducing the limits,

between which the roots are to be sought, is to suppose succes-

sively

a?=l, a?i=2, X =z 2, x = 4;

and if two of these numbers, substituted in the proposed equation,

lead to resuhs with contrary signs, they will form new limits to

the roots. Now if we make

w = 1, the first member of the equation becomes + 21,

X =i2 + 5,

a; =: 3 — 9,

0? =4 + 15;

it is evident, therefore, that this equation has two real roots, the

one found between 2 and 3, and the other between 3 and 4. To
approximate the first still nearer, w^e take the number 2,5, which

occupies the middle place between 2 and 3 [Arith, 129), the

present limits of this root ; making then x = 2,5, we arrive at the

result

+ 39,0625— 62,5_ 7,5 + 27 zi:— 3,9375
;

as this result is negative, it is evident, that the root sought is be-

tween 2 and 2,5. The mean of these two numbers is 2,25 ; taking

X = 2,3, we have the root sought within about one tenth of its value,

and shall approximate the true root very fast by the following

process, given by Newton.

We make x =. 2,3 + y ; it is evident, that the unknown quan-

tity y amounts only to a very small fraction, the square and higher

powers of which may be neglected ; we have then

x'=:z (2,3)4+ 4 (2,3)3 y

_ 4 ^3 --. _ 4 (2,3)3_ 12 (2,3)2 y

— Sx =— 3(2,3) — 2y;

substituting these values, the proposed equation becomes

— 0,5839— 17,812 3/ = 0,

which gives

_ 0,5839

y "^ ~ l7;812*
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Stopping at hundredths, we obtain for the result of the first opera*

tion

y=i — 0,03 and a? = 2,3— 0,03 i= 2,27.

To obtain a new vahie of ^, more exact than the preceding, we

suppose X =z 2,27 + y' 5 substituting this value in the proposed

equation and neglecting all the powers of y^ exceeding the first, we
find

— 0,04595359 — \8fi40468y' =z 0,

whence

_(^04595359___
y - 18,046468 - ^'^^^^'

and, consequently, x =. 2,2675. We may, by pursuing this pro-

cess, approximate, as nearly as we please, the true value of x.

If we seek the second root, contained between 3 and 4, by the

same method, we find, stopping at the fourth decimal place,

X =z 3,6797.

216. We may ascertain the exactness of the method above

explained, by seeking the limit to the values of the terms, which

are neglected.

If the proposed equation were

x'^ + P 0:^-1 + q a:"^~2 ^ Tx+U=:0,
substituting a + y for a?, we should have for the result the first

of the equations found in art. 204., because a being not the root of

the equation, but only an approximate value of x, cannot reduce to

nothing the quantity

a^+Pa'«-i+ Qa^-2 ^ y^^ jj^

Representing this last by P, we have, instead of the equation (rf)

above referred to, the following

^+i2/+r^2/' + r:f:i2/' +r=o;
from which we obtain

^2/z=_/;^__^y2____2^3 _y.

V By^ Cy^ y^
^_ f_

y '^ A 1.2^ I.2.3J^ A
Neglecting the powers of y exceeding the first, we have

V
2/ = -3,
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and this value differs from the real value of y by

TTWA 1.2.8^ T'
If a differs from the true value of x only by a quantity less

than - a, the above mentioned error becomes less than that,

P

which would arise from putting -am the place of y, which would

give

1 . 2A \p/ 1.2.3^ \pj 3 Vp/
•

Finding the value of this quantity, we shall be able to determine,

whether it may be neglected when considered with reference to

V
-z^ and if it be found too large, we must obtain for a a number^

which approaches nearer to the true value of x.

To conclude, when we have gone through the calculation with

several numbers, y, y'^ y^^, he. if the results thus obtained form a

decreasing series, an approximation is certain.

217. The method we have employed above, is called the

Method by successive Substitutions. Lagrange has considerably

improved it.^ He has remarked, that by substituting only entire

numbers, we may pass over several roots without perceiving them.

In fact, if we have, for example, the equation

(*-i)(*-i)(*~3)(x-4)=0,

by substituting for x the numbers, 0, 1,2, 3, &c. we shall pass

over the roots |- and |, without discovering that they exist ; for we

shall have

(0— 1) (0— i) (0— 3) (0— 4)=. +1 X i X 3 X 4,

(1 -1) (1 - i) (1 - 3) (1 -4) :=z + I X I X 2 X 3,

results affected by the same sign. It will be readily perceived,

that this circumstance takes place in consequence of the fact,

that the substitution of 1 for x changes at the same time the

signs of both the factors, x— i, and x— |, which pass from the

negative slate, in which they are when is put in the place of

X, to the positive ; but if we substitute for x a number between

1 and 1, the sign of the factor x — ^ alone will be changed^ and

we shall obtain a negative result.

* See Resolution des Ef/uatiojis Numeriques.
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We shall necessarily meet with such a number, if we substitute,

in the place of x, numbers, whicli differ from each other by a

quantity less than the ditrerence between the roots i and }. If, for

example, we substitute i,
f ,

-f
,

-f ? f j ^c. there will be two changes

of the sign.

It may be objected to the above example, that when the frac-

tional coefficients of an equation have been made to disappear, the

equation can have for roots only either entire or irrational numbers,

and not fractions ; but it will be readily seen, that the irrational

numbers, for which we have, in the example, substituted fractions

for the purpose of simplifying the expressions, may differ from each

other by a quantity less than unity.

In general, the results will have the same sign, whenever the

substitutions produce a change in the sign of an even number of

factors.* To obviate this inconvenience we must take the num-

bers to be substituted, such, that the difference between the small-

est limit and the greatest, will be less than the least of the dif-

ferences, which can exist between the roots of the proposed equa-

tion ; by this means the numbers to be substltued will necessa-

rily fall between the successive roots, and will cause a change in

the sign of one factor only. This process does not presuppose the

smallest difference between the roots to be known, but requires

only, that the limit, below which it cannot fall, be determined.

In order to obtain this limit, we form the equation involving the

squares of the differences of the roots (208).

Let there be the equation

z^ + p z""-^ + q z""-^ .... + tz + u:=zO.... (D),

to obtain the smallest limit to the roots, we make (212) z = ~; we

have then the equation

or, reducing all the term.s to the same denominator,

] ^ pv -^ qv^ + t v""^ 4- u V'' z^ D,

then disengaging t;",

* Equal roots cannot be discovered by this process, when their

number is even ; to find these we must employ the method given in

art. 205.

.%. 31
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and if - represent the greatest negative coefficient found in this

equation, we shall have

r

u *

It is only necessary to consider here the positive limit, as this alone

relates to the real roots of the proposed equation.

Knowing the limit

1 _ u

u
"^

less than the square of the smallest difference between the roots of

the proposed equation, we may find its square root, or at least, take

the rational number next below this root ; this number, which I

shall designate by k, will represent the difference which must exist

between the several numbers to be substituted. We thus form the

two series,

0, +Jc, +2k, +3 k, he.

— k, —2 k, — 3 A:, &ic.

from which we are to take only the terms, comprehended between

the limits to the smallest and the greatest positive roots, and those

to the smallest and the greatest negative roots of the proposed

equation. Substituting these different numbers, we shall arrive at

a series of results, which will show by the changes of the sign that

take place, the several real roots, whether positive or negative.

218. Let there be, for example, the equation

0^3_ 7 ^ ^ 7 ^ 0,

from which, in art. 208., was derived the equation

z^— 42z^ + 44lz — 49=z0',

making z =. -, and, after substituting this value, arranging the re-

sult with reference to v, we have

from which we obtain

i;<10, ;r>xV;
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we must, therefore, take k =z or <C —7=« This condition will be

fulfilled ,if we make k = I ; but it is only necessary to suppose

k =: ^' for by pulling 9 in the place of v in the preceding equa-

tion, we oblain a positive result, which must become greater, when

a greater value is assigned to v, since the terms v^ and 9 v^ already

destroy each other, and f|^ exceeds -^j.

The highest limit to the positive roots of the proposed equation

a;3 _ 7 ^ _|_ 7 _, 0,

is 8, and that to the negative roots — 8 ; we must, therefore, sub-

stitute for X the numbers

^J 3^5
12 3 4
35 "35 3' 3"J • •

• • • •
2 4
3 5

1 2 3 4
• • • • — 24

35 35 35 35 • • • 3 •

X'

We may avoid fractions by making a? = ^ ; for in this case the

differences between the several values of x^ will be triple of those

between the values of x, and, consequenlly, will exceed unity ; we

shall then have only to substitute, successively,

0, 1, 2, 3, 24,

— 1,-2,— 3, — 24,

in the equation

^/3 _QSx' + 189 = 0.

The signs of the results will be changed between -{- 4 and + 5,

between -f- 5 and + 6, and between — 9 and — 10, so that we
shall have for the positive values,

a?' > 4 and < 5 >
^j^^^^^

( a? > f and < f
x^ ^ 5 and <^ 6 y ^

"^
' ( a? > f and <; f

and the negative value of x^ will be found between — 9 and — 10

that of X between — f and — y

.

Knowing now the several roots of the proposed equation within

I, we may approach nearer to the true value by the method ex-

plained in art. 215.

219. The methods employed in the example given in art. 21 5,

and in the preceding article, may be applied to an equation of any
degree whatever, and will lead to values approaching the several

real roots of this equation. It must be admitted, however, tha

the operation becomes very tedious, when the degree of the pro-

posed equation is very elevated ; but in most cases it will be un-

necessary to resort to the equation (D), or rather its place may be
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supplied by methods, with which the study of the higher branches

of analysis will make us acquainted."^

I shall observe, however, that by substituting successively the

nLimbers 0, 1,2, 3, &c. in the place of x, we shall often be lead

to suspect the existence of roots, that differ from each other by a

quantity less than unity. In the example, upon which we have

been employed, the results are

+ 7, + 1, + 1, + 13,

which begin to increase after having decreased from + 7 to + 1.

From this order being reversed it may be supposed, that between

the numbers + 1 and + 2 there are two roots either equal or

nearly equal. To verify this supposition, the unknown quantity

should be multiplied. Making x =i ^, we find

y^ _ 700 y + 7000 =z 0,

an equation, which has two positive roots, one between 13 and 14,

and the other between 16 and 17.

The number of trials necessary for discovering these roots is not

great; for it is only between 10 and 20, that we are to search for

y ; and the values of this unknown quantity being determined in

whole numbers, we may find those of x within one tenth of unity.

220. When the coefficients in the equation proposed for resolu-

tion are very large, it will be found convenient to transform this

equation into another, in which the coefficients shall be reduced to

smaller numbers. If we have, for example

0^4 _ 800^3 _|_ 1993 ^2 _ 14937 ^ _|_ 5Q00 :z= 0,

we may make a; =1= lO^r ; the equation then becomes

z^^Sz^ + 19,98 z^ — 14,937 z + 0,b = 0.

If we take the entire numbers, which approach nearest to the

coefficients in this result, we shall have

z^ — S z^ + 20 z^ — 15 z + 0,5 = 0.

It may be readily discovered, that z has two real values, one be-

tween and 1, the other between 1 and 2, whence it follows, that

those of the proposed equation are between and 10, and 10 and

20.

* A very elegant method, given by Lagrange for avoiding the use

of the equation (JD) may be found in the Trait6 de la Resolution dcs

Equations numeriques.
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I shall not here enter into the Investigation of imaginary roots, as

it depends on principles we cannot at present stop to illustrate ;

I shall pursue the subject in the Supplement,

221. Lagrange has given to the successive substitutions a form

which has this advantage, that it shows immediately what ap-

proaches we make to the true root by each of the several opera-

tions, and which does not presuppose the value to be known within

one tenth.

Let a represent the entire number immediately below the root

sought 5 to obtain this root, it will be only necessary to augment a

by a fraction ; we have, therefore, x z=i a -\* -. The equation

involving ?/, with which we are furnished by substituting this value

in the proposed equation, will necessarily have one root greater

than unity ; taking h to represent the entire number immediately

below this root, we have for the second approximation a? =: a 4~ x-

But h having the same relation to y, which a has to a?, we may, in

the equation involving y, make y z=zh -{—;, and y' will necessarily

be greater than unity ; representing by h^ the entire number imme-

diately below the root of the equation in y, we have

-6 + L^^^Hii.
y— ' 6^ — 6^

Gubstituting this value in the expression for x, we have

X =: a -f- bb' -{-V

for the third approximation to x. We may find a fourth by making

below 2/'', we shall have

y^ =zb^ -]—^ ; for if 6'' designate the entire number immediately

y — ^ i- 5// — ^// 5

whence

y = h +

X =. a -{

b^ ___ b h' b" + b" -f b

b' b" + 1'"
b' b" + 1

b' b" + 1

6 b' b'' -f- b" -t- b'

and so on.
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222, I shall apply this method to the equation

a;3 _ 7 ^ ^ 7 :^ 0.

We have already seen (218), that the smallest of the positive roots

of this equation is found between f and f , that is, between 1 and

2 ; we make, therefore, a? = 1 -|— ; we shall then have

y^ — 4y^ + 3y+ 1 = 0.

The limit to the positive roots of this last equation is 5, and by

substituting, successively, 0, 1,2, 3, 4, in the place of y, we imme-

diately discover, that this equation has two roots greater than unity,

one between 1 and 2, and the other between 2 and 3. Hence

OJ = 1 + TJ ^^^ ^ = 1 + i?

that is,

X =. 2, and a? = •§.

These two values correspond to those, which were found above

between f and |, and between f and |, and which differ from

each other by a quantity less than unity.

In order to obtain the first, which answers to the supposition of

y =z 1, to a greater degree of exactness, we make

we then have

j,/3 _2y'^ — y' + 1 =z 0.

We find in this equation only one root greater than unity, and that

is between 2 and 3, which gives

y = 1 + 1 = I,

whence

^ = 1 + I = f

.

Again, if we suppose y^ =z 2 -\—77, we shall be furnished with the

equation

y//3_ 3 j^//2 _ 4 2/// _ 1 = ;

we find the value of y^^ to be between 4 and 5 ; taking the smallest

of these numbers, 4, we have

y = 2 + 1, y = 1 + 1 = V, ^ = 1 + A = f |.

It would be easy to pursue this process, by making y = 4 -|

—

jj;i

and so on.
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I return now to the second value of x, which, by the first ap-

proximation, was found equal to f, and which answers to the sup-

position of 2/ ~ 2. Making y z=. 2 -\ ; and substituting this

expression in the equation involving y, we have, after changing the

signs in order to render the first term positive,

y/3 ^ y2 _ 2 y _ 1 ~ 0.

This equation, like the corresponding one in the above operation,

has only one root greater than unity, which is found between 1 and

2 ; taking j/^ = 1, we have

y = 3, a; = |.

Again assuming

we are furnished with the equation

j,//3 _ 3 y/2 _ 4 y/ _ 1 -_
0,

in which y'^ is found to be between 4 and 5, whence

y' =:*» y = Vj ^ == ff-

We may continue the process by making y" z=z 4: -{- —
^, and

so on.

The equation x^— 1 x-\-l = has also one negative root,

between— 3 and— 4. In order to approach it more nearly, we

make x z=i — 3
; which gives

2^3_202/2_9y_i _.o,y>20and<21,

whence

"^ ^ 2 2 0'

To proceed further, we may suppose y = 20
-f-

-- &;c., we

shall then obtain, successively, values more and more exact.

The several equations transformed into equations in ?/, y\ y"

^

&;c. will have only one root greater than unity, unless two or more

roots of the proposed equation are comprehended within the same
limits a and « + 1 ; when this is the case, as in the above example,

we shall find in some one of the equations in y, y'^ &c. several

values greater than unity. These values will introduce the different

series of equations, which show the several roots of the proposed

equation, that exist within the limits a and a -{- 1.
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The learner may exercise himself upon the following equation
5

the real root of which is between 2 and 3 ; we find for the entire

values of y, /, &;c.

JO, 1, 1, 2, 1, 3, 1, 1, 12, &;c.

and for the approximate values of a;,

2 21 2 3 4.4 1_1 1 1_5_5 5 7jB 7 3l 1_3_0_7 l64l5
T> lOJ 11> 2 1J 575 745 575? 349? 6245 Ts'sT*

O/* Proportion and Progression.

223. Arithmetic introduces us to a knowledge of the defini-

tion and fundamental properties of proportion and equidifference,

or of what is termed geometrical and arithmetical proportion, I

now proceed to treat of the application of algebra to the principles

there developed ; this will lead to several results, of which frequent

use is made in geometry.

I shall begin by observing, that equidifference and proportion

may be expressed by equations. Let A, B, C, D, be the four

terms of the former, and a, b, c, d, the four terms of the latter

;

we have then

B—A=D—C [Ariih. 127), ^ = ^ {Arith. Ill),

equations, which are to be regarded as equivalent to the expres-

sions

A.B : C . D, a:b::c:d,

and which give

A + D =^B+C, ad — he.

Hence it follows, that, in equidifference, the sum of the extreme

terms is equal to that of the means, and in proportion, the product

of the extremes is equal to the product of the means, as has been

shown in Arithmetic (127, 113), by reasonings, of which the above

equations are only a translation into algebraic expressions.

The reciprocal of each of the preceding propositions may be

easily demonstrated ; for from the equations

A + D:;=zB+C, ad=ibc,

we return at once to

J)-0 = B-A, \ = %
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and, consequently, when four quantities are such, that two among

them give the same sum, or the same product, as the other two, the

first are the means and the second the extremes (or the converse)

of an indifference or proportion.

When B =: C, the equidifference is said to be continued; the

same is said of proportion, when b =i c. We have in this case

A + D — 2B, ad^h^',

that is, in continued equidifference, the sum of the extremes is equal

to double the mean ; and in 'proportion, the product of the extremes

is equal to the square of the mean. From this we deduce

j^ A + D ,

ri =^ -^— , o = v/ac?;
.-^

the quantity B is the middle or mean arithmetical proportional be-

tween A and D, and the quantity b the mean geometrical proportional

between a and d.

The fundamental equations,

B— Az:=:D—C,
h_d
a c'

lead also to the following

;

C—A^D— B,
c d

a'^V
from which it is evident, that w^e may change the relaiive places

of the means in the expressions A . B : C . D, a : b : : c : d, and in

this way obtain A . C : B . B, a : c : i b : d. In general, we may
make any transposition of the terms which is consistent with the

equations

A + D=zB + C andad = bc{Arith. 114.)

I have now done with equidifference, and shall proceed to

consider proportion simply.

224. It is evident, that to the two members of the equation

- = - we may add the same quantity m, or subtract it from them
;

so that we have

b_^ d ^
a c

^

reducing the terms of each member to the same denominator, we
obtain

6rfcma dzhm c

u — ~^ '

Jllg. 32
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an equation, which may assume the form

c ddzm c

a b dzm a*

and may be reduced to the following proportion,

b dtz ma :d zhmc ::a:c'y

c d
and as - = y, we have likewise

ddz mc d
bdtzma 6'

or b dtz m a : d doz m c : : b : d.

These two proportions may be enunciated thus ; The first conse-

quent plus or minus its antecedent taken a given number of times, is

to the second consequent plus or minus its antecedent taken the same

number of times, as the first term is to the third, or as the second is

to the fourth.

Taking the sums separately and comparing them together, and

also the differences, we obtain

d-\~mc c d— mc c

b-\-ma a' b— ma a'

whence we conclude

d -\-m c d— m c

b -\- ma b — ma'*

that is,

b -\- ma :t/ + mc:: b— m a:d— mc;

or rather, by changing the relative places of the means

b -\- ma: b— ma: :d -^ mc :d— mc;

and if we make m = I, we have simply

b -\- a :b— a: : d -\- c :d— c,

which may be enunciated thus

;

The sum of the first two terms is to their difference as the sum of

th& last two is to their difference,

225. The proportion a :b ::c :d may be written thus

;

a:c: :b :d'y

we have then

whence

c
,

- zt: m
a 4^ m,

c zizma

a
znz.

dztmb
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and lastly,

c dzm a : d ±1 m b : : a : b or : : cid,

from which it follows, that the second antecedent plus or minus the

first taken a given number of times, is to the second consequent plus

or minus the first taken the same number of times, as any one of the

antecedents whatever is to its consequent.

This proposition may also be deduced immediately from that

given in the preceding article ; for by changing the order of the

means in the original proportion

a : b : : c : d,

and applying the proposition referred to, we obtain, successively,

a : c ::b : d,

c dzma :d do mb : :a :b or : :c:d,

and denominating the letters, a, 6, c, d, in this last proportion,

according to the place they occupy in the original proportion, we

may adopt the preceding enunciation.

Making m = 1, we obtain the proportions

c dz aid dzb :: a :b

:: c : d

c -^ a: c— a: :d + b id— 6;

whence it appears, that the sum or difference of the antecedents is

to the sum or difference of the consequents, as one antecedent is to

its consequent, and that the sum of the antecedents is to their differ-

ence as that of the consequents is to their difference.

In general, if we have

a c e g

and make - = a, we shall have
a ^

d f h
^

which gives

b=aq, d = cq, f=eq, h=:gq,&LC.

then, by adding these equations member to member, we obtain

b + d+f+ hz=: aq + c q + e q + g q,

or h + d +f+hz=iq{a+ c + e + g).
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whence it follows, that

h+d+f+h

^

h

a -{- c-^ e -{- g ^ a

This result is enunciated thus ; in a series of equal ratios^

a : b : : c : d : : e : f : : g : h, &c.

the sum of any number whatever of antecedents is to the sum of a

like number of consequents^ as one antecedent is to its consequent.

226. If we have the two equations

b d , / ^
- == -, and - = -,
a c^ eg

and multiply the first members together and the second together,

the result will be

bf _dh
^

ae cg^

an equation equivalent to the proportion

ae :bf:: eg : dh,

which may be obtained also by multiplying the several terms of the

proportion

a : b : : c : d,

by the corresponding ones in the proportion

e:f::g:h.

Two proportions multiplied thus term by term are said to be mul-

tiplied in order ; and the products obtained in this way, are, as

will be seen, proportional ; the new ratios are the ratios compounded

of the original ratios {Arith. 123).

It will be readily perceived also, that if we divide two propor-

tions term by term, or in order, the resuh will be a proportion.

227. If we have

b_d

we may deduce from it

Im ^ ^m

which gives

a'^ : b'^ : : c*" : d^
;

whence it follows, that the squares, the cubes, and, in general, the

similar powers offour proportional quantities are also proportional.

The same may be said of fractional powers, for, since
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b _ \/b1=
and

therefore,

or

a y-

m m

Id ^

m m _'

a/ a y/c

\/a : \/ 6 : : \/c : \/J,

if a : 6 : : c : ^ ; that is, the roots of the same degree offour pro-

portional quantities, are also proportional.

Such are the leading principles in the theory of proportion.

This theory was invented for the purpose of discovering certain

quantities by comparing them with others. Latin names were for

a long time used to express the different changes or transforma-

tions, which a proportion admits of. We are beginning to relieve

the memory of the mathematical student from so unnecessary a

burden ; and this parade of proportions might be entirely super-

seded by substituting the corresponding equations, which would

give greater uniformity to our methods, and more precision to our

ideas.

228. We pass from proportion to progression by an easy tran-

sition. After we have acquired the notion of three quantities in

continued equidifference, the last of which exceeds the second, as

much as this exceeds the first, we shall be able, without difficulty,

to represent to ourselves an indefinite number of quantities, a, b, c,

d, &c., such, that each shall exceed the preceding one, by the

same quantity d, so that

h=: a + d, c =ib + di d = c + d, e =: d + di &c.

A series of these quantities is written thus
;

-rr-a.b.c.d.e.f, he.

and is termed an arithmetical progression ; I have thought it pro-

per, however, to change this denomination to ihdX oi progression by

differences. (See Arith. art. 127, note.)
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We may determine any term whatever of this progression, with-

out employing the intermediate ones. In fact, if we substitute for

6 its value in the expression for c, we have

by means of this last, we find

cZ = a + 3 ^, then e = a + 4 ^,

and so on j whence it is evident, that representing by I the term,

the place of which is denoted by w, we have

Let there be, for example, the progression

-r- 3 . 5 . 7 . 9 . 11 . 13 . 15 . 17, &:c.

here the first term a = 3, the difference or ratio 5 = 2; we find

for the eighth term

3 + (8 — 1)2 = 17,

the same result, to which we arrive by calculating the several

preceding terms.

The progression we have been considering is called increasing

;

by reversing the order, in which the terms are written, thus,

-^ 17 . 15 . 13 . 11 . 9 . 7 . 5 . 3 . 1 . — 1 . — 3, &c.

we form a decreasing progression. We may still find any term

whatever by means of the formula a -{- [n — 1)5, observing only,

that 8 is to be considered as negative, since, in this case, we must

subtract the difference from any particular term in order to obtain

the following.

229. We may also, by a very simple process, determine the sum

of any number whatever of terms in a progression by differences.

This progression being represented by

-T- a •!) . c i . k . I,

and S denoting the sum of all the terms, we have

S =za + b + c ^i ^ k + l.

Reversing the order, in which the terms of the second member of

this equation are written, we have still

S =zl + Jc + i + c + J + a.

If we add together these equations, and unite the corresponding

terms, we obtain

2S=(a+0+(6+^)+(c+*>-+(*'+c)+(^+6)+(i+a);

but by the nature of the progression, we have, beginning with the

first term,



Proportion and Progression, 255

a + d=:b, b + d = c, i+ d = Jc, k + S =1 1,

and, consequently, beginning with the last

I — S z:^ Jc,k — d =ii, c — 5 = 6, h — d = a;

by adding the corresponding equations, we shall perceive at once,

that

a-\'l:=:b-\'k=zc-\-i, he.

and, consequently, that

2S =:n{a + I)',

whence it follows, that

o _ n{a + l)
o _ ^ .

Applying this formula to the progression

-^- 3 . 5 . 7 . 9 &c.

we find for the sura of the first ei2;ht terms

230. The equation

I =z a + {n— l)d,

together with

^ {a -\-l)n
^ =—2 '

furnishes us with the means of finding any two of the five quanti-

tities, a, d, n, I, and S, when the other three are known ; I shall

not stop to treat of the several cases, which may be presented.

231. From proportion is derived progression by quotients or

geometrical progression, which consists of a series of terms, such,

that the quotient arising from the division of one term by that which

precedes it, is the same, from whatever part of the series the two

terms are taken. The series

~ 2 : 6 : 18 : 54 : 162 : he,

4f 45 : 15 : 5: f: f : &:c.

are progressions of this kind ; the quotient or ratio is 3 in the first,

and \ in the other ; the first is increasing, and the second decreas-

ing. Each of these progressions forms a series of equal ratios, and

for this reason is wrhten, as above.

Let

a, b, c, d, k, I,

be the terms of a progression by quotients ; making - = y, we have

by the nature of the progression,
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b ^c _c?__ e I

" a b c d ' * ' k^

or b = aq^ c =:^b q, d =1 cq, e =:d q, , , * I =z k q.

Substituting, successively, the value of b in the expression for c>

and the value of c in the expression for d, &c,, we have

b =1 aq, cz=. aff^ d=: aq^, e z=z aq\ , . . I =:^ a q^~^
,

taking n to represent the place of the term Z, or the number of

terras considered in the proposed progression.

By means of the formula I = a q^—^ we may determine any

term whatever, without making use of the several intermediate

ones. The tenth term of the progression

-H- 2:6: 18: Sic,

for example, is equal to 2 X 3^ =: 39366,

232. We may also find the sum of any number of terms we

please of the progression

^ aib :c:d, &lc.

by adding together the equations

b =z a q, c = h q, d = c q, e = dq, . . , . 1=: k q;

for the result will be

ij^c+d + e...+lz=:{a + b + c + d...+k)q;

and representing by S the sum sought, we have

i^c + d+e + 1 =8— a,

a-f-6 + c-|-c?. . . . -{- k =1 S— Z,

whence S— a = g^(S— I),

and, consequently,

?—

1

f The truth of this result may be rendered very evident, indepen-

dently of analysis. If it were required, for example, to find the sum

of the progression

-^ 2 : 6 : 18 : 54 : 162,

multiplying by the ratio, we have

-H- 6 : 18 : 54 : 162 : 486.

The first series being subtracted from this gives 486— 2, equal to so

many times the first series, as is denoted by the ratio minus one,

that is
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In the above example, we find for the sum of the first ten terms

of the progression

4f 2:6 :18:&ic.

2x
^^^
— "^

z= 310 — 1 z= 59048.

233. The two equations,

comprehend the mutual relations, which exist among the five

quantities, a, q, n, I, and S, in a progression by quotients, and

enable us to find any two of these quantities, when the other three

are given.

234. If we substitute a q^"^ in the place of Z, in the expression

for S, we have

^_ {aq^-'l)

When 5' is a whole number, the quantity q'^ will become greater

and greater in proportion to the increased magnitude of the number

n ; and >S may be made to exceed any quantity whatever, by as-

signing a proper value to n, that is, by taking a sufficient number of

terms in the proposed progression. But if §' is a fraction, represent-

ed by —, we have

^(—;r"^0 amfl n) am ^,
5=

1 . m — 1 m— J

m

2 + 6 + 18 + 54 + 162 == ?-^^ -^.

If we multiply by the ratio q the general series

-^'r a:h :c : d : e /,

we have -rr aq:bq: c q\ dq\ eq . , , , , Iq.

Then, because hz=i aq, &c., the second series minus the first is Z^— a,

equal to so many times the first series, as is denoted by the ratio minus

one.

Hence a + &-|-c-|-rf + e +^ = ~^^T*

t Multiplying the numerator and denominator by — m.

Alg. 33
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and it is evident, that as the number n becomes greater, the tetm

—^^ will become smaller, and, consequently, the value of S will

approach nearer and nearer to the quantity y from which it will

differ only by

therefore, the greater the number of terms we take in the pro-

posed progression, the more nearly will their sum approach to

—-^. It may even differ from ———r by a quantity less than

any assignable quantity, without ever becoming in a rigorous sense

equal to it.

The quantity
. , which 1 shall designate by L, formsj we

perceive, a limit, to which the particular sums represented by S,

approach nearer and nearer.

Applying what has been said to the progression

-^1.1.1.1. 1_ S^p

we hav6

whence

and the gteater the number of terms we take in the above ptd^

gression, the nearer their sum will approach to an equality with 2*

We have, in fact,

1 = 1 zs: 2— 1,

1 + 1 ±= 3
2
= 2 —-1^

1 + \ + \
= 7

4 = 2 —. 1
45

1 + ^ + i + \ = y = 2 —. 1

1 + \-\-i + 1 + 1 1= n zz= 2 — 1

1

6

The expression for i may be considered as the siim of thd

decreasing progression by quotients, continued to infinity, and it is

thus, that it is usually presented ; but in order to form aclear idea

of it, we must represent it in a limited view.
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235. We may obtain from the expression

gr—

1

all the terms of the progression, of which it denotes the sum \ fof,

if we divide q^ — 1 hy q— 1 (158), we find

fEi^^^ ^ 1 +? + ?'+?' + ?' + 2•^^

which gives

S^ia-^aq-^-aq^ 4"^ g'^*^^.

We may employ the value of L for the same purpose ; in this

case, m is to be divided by m— 1, as follows
;

m

r^m+ 1

m— 1

1 + - + ^ + "3 + &c.

-.+'
m

-- + -m m^

_1 + 1
m^ ^ m^

he.

We begin, by dividing, according to the usual method, by the

first term, and find 1 for the quotient ; we multiply this quotient

by the divisor and subtract the product from the dividend ; then,

dividing the remainder by the first term of the divisor, we obtain

— for the quotient, and have — for a remainder ; we go through

the same process with this remainder as with the preceding. Pur-

suing this method, we soon discover the law, to which the several

particular quotients are subjected, and perceive that the ex;pressian

r is equivalent to the series
n^— 1

1 + -i + -^ + A + ^0.

continued to infinity. Substituting for m its value -, and multiply-
of

jng by a, w^e find as before

a -^ a g' 4^ aq^ -{-. aq^ -^ he.

fpr the progression of which L represents the limit.
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236. The series

1 + i + -\ + -^ + &c.

is considered as the value of the fraction 7, whenever it is con-m— 1

verging, that is, when the terms, of w^hich it is composed, become

smaller and smaller the further they are removed from the first.

Indeed, if we make the division cease successively at the firsts

lU, llillU ICilJclilJU

the quotients 1 and the remainders 1

' m
1

m

' + T. + h
1

he. he

the former of which approach the true value, exactly in proportion

as the latter are diminished ; and this takes place, only when m
exceeds unity. In all other cases we must have regard to the

remainders, which, increasing without limit, make it evident, that

the quotients are departing further and further from the true value.

To render this clear, we have only to make, successively,

m = 2, m = 1, m :=: 1. Upon the first supposition, we have

171

^_f = 2 = 1 + 1 + 1 + 1 + tV + Sic.

and it has been shown (234), that the series, which constitutes the

second member, approaches, in fact, nearer and nearer to 2.

The second supposition leads us to

Tit

^^ZTl = i = 1 + 1 + 1 + I + 1 + 1 + 1 &c.

This result, l + l + l-j-l-l-I &;c., continued to infinity, pre-

sents in reality an infinite quaniily, as the nature of the expression

i implies
;
yet if we neglect the remainders in this example, we

are led into an absurdity ; for since the divisor, multiplied by the

quotient, must produce the dividend, we have

1 = (1+1 + 1 + 1 + )0;

but the second member is strictly reduced to nothing, we have

therefore 1=0.
The third supposition leads to consequences not less absurd, if

we neglect the remainders, and consider the series, which is obtain-
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ed, as expressing the value of the fraction, from which it is derived.

Making m = i, we find

-^ z= ^ 1 = 1 + 2 + 4 + 8 + 16 + &ic.,

which is evidently false.

There will be no contradiction of this kind, if we observe, that,

in the second case, the remainders

1 _1 JL

are each equal to 1, and that, since they do not diminish, they can

never be neglected, to whatever extent the series is continued. If

we add, therefore, one of these remainders to the second member

of the equation

1 ^(1 + 1 + 1 + 1 + 1 + )0,

the equation becomes true. In the third case, the remainders^

1 1 1 i_ R
^'m' 7;^^'' ^3' ^^•

form the increasing progression, 1, 2, 4, 8, 16, &ic. and, if we add

to the several quotients the fractions, arising from the correspond-

in2; remainders, the exact expressions for will be

1 +

m — 1

1

m— 1

1 + 1 + !
711 ' m {m — 1)

1 J—.J _ _j

m "^
111^

"^
mP- {jii— 1)

&c.,

each of which gives — 1, when m =. \,

If we take w = — n, the fraction ^ becomes —;—r ; them — 1 n -{- i
^

series, which is produced by developing this fraction, assumes the

form

and making n =: 1, we have

1 — 1 + 1 — 1 + 1 — 1 + &C.,

a series, whrch becomes alternately 1 and 0, and which, conse-

quently, as often exceeds, as it falls below, the true value of
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—;—, equal in this case to \ ; but as the above series is not con^
w-f l' ^ ^

verging, it cannot give this true value ; and we must, therefore,

take into consideration the remainder, at whatever term we stop.

If we suppose, in the preceding series, tz z=: 2, we have

1 14-1 1 J ^i_ kic

a series, in which the particular sums, 1, |, |, f, &;c. are, alter^

nately, smaller and greater than the true value of —r—r, which is•" ^ n-\- I

|, but to which they approach continually, because the proposed

series is converging.

Although diverging series, that is, those, the terms of which go

on increasing, continue to depart further and further from the true

value of the expressions from which they are derived, yet consider-

ed as developements of these expressions, they may serve to show

such of their properties, as do not depend on their summation.

237. If we continue any process of division in algebra, accord-

ing to the method pursued above (235), with respect to the quan-

tities m and m --^ \^ the quotient will always be expressed by an

infinite series composed of simple terms. Infinite series are also

formed by extracting the roots of imperfect powers, and continuing

the operation upon the several successive remainders ; but they

are obtained more easily by means of the formula for binomial

quantities, as will be shown in the Supplement^ where I shall treat

of the more common series.

Examples in Arithmetical Progressions.

Let a denote the first, I the last term, n the number of terms, d

the common difference, and S\\\e sum of an arithmetical progression.

l^a + {n—\)8, S zz: (a + g = (2 a + (?i— 1 ) 6Z) J
1. Given a = 1, 5 = 1, w = 14 ; then Z =: 14, S = 105.

% Given a == 2, ^ = 3, n = 17 ; then Z =: 50, S = 442.

3. Given a = 7, 5 z= i, w = 16 ; then / = lOf, S = 142.

4, Given a = 2|,^ =1, n = 100 ; then / = 351, S =z 1900,

6. Given a = |, ^ = i, n =: 26 ; then Z = 3i, S = 60|.

6. Given a = f , 5 = If, n = 13 ; then Z = 20^, S = 139f

.

7. Given a = — 7, 5izi3, n = 8; then Z z= 14, S = 28.

8. Given <i = -. 6, i5 = |, /i == 30 ; then I =p 15^, S =;= H6h
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9. Given a = 1, ^ = — i
, n =r: 20 ; then Z = — If,

S^ = — 13f.

10. Given a =: 3i, 5 — — 2|, ti izi 15 ; then I = — 361,

*S = — 2471.

11. Given a = 0, d = I, n =i 11 ; then Z = 5, S =z 21\.
12. Givenaz:^ — 10, 5 =: — 2, ?2 = 6 ; then Z = _ 20,

5 zz: — 90.

13. Given a r= — |, (J =: — |, n =- 25 ; then I = — 21|,

S =z —2811.

Examples in Geometrical Progression^

Let a be the first term, q the common ratio, I the last term, ft

the number of terms, and S the sum of all the terms ; then

^ g'— 1 q—l
1. Given ai=l, q =± 2, n = 7 ; then Z zd: 64, *S = 127*

2. Given a = 4, g' = 3, w = 10; then Z — 78732,

/Szn 118096.

3. Given a =z 9, q =z i, n =: 7 ; then Z — 258|fif

,

S = 59l-7_4_i_

4. Given a = 6i, g^ z= ^, ti = 8 ; then Z = lOGff^l,

S = 307111.

6. Given a t=i 6, gz=i, 7i = 6; then Z = Ifii, S = 19|f |.

6. Given a = 5, q = 4, n =z 9 ; then Z = 327680,

5^ = 436905.

7. Given a = 8, g = i, w = 15 ; then I =. ^oVsj
S = 152 047

5. Given a = 3|, g^ = |, w =z 8 ; then Z = yVrV/o^
iSf 21119.2.7KJ •^354294*

9. Given a = f, 9 = |, n = 11 ; then Z = yfff j^,

Theory of Exponential Quantities and of Logarithm^.

238. In the several questions we have resolved thus far, the

Unknown quantities have not been made subjects of consideration

as exponents ; this will be requisite, however, if we would deter-

mine the number of terms in a progression by quotients, of which

the first term, the last term, and the ratio are given. In fact, we

are furnished by a question of this kind with the equation
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I = aq""-^ (231),

in which n will be the unknown quantity ; abridging the expres-

sion, by making n — 1 =: x^ we have I =i a q , This equation

cannot be resolved by the direct methods Iiitherto explained ; and

quantities like x cannot be represented by any of the signs already

employed. In order to present this subject in a more clear light,

I shall go back to state, according to Euler, the connexion which

exists between the several algebraic operations, and the manner, in

which they give rise to new species of quantities.

239. Let a and 6 be two quantities, which it is required to add

together ; we have

a -]- J z= c
;

and in seeking a or 6 from this equation, we find

a =: c — b, b == c — a
;

hence the origin of subtraction ; but when this last operation can-

not be performed in the order in which it is indicated, the result

becomes negative.

The repeated addition of the same quantity gives rise to multi-

plication ; a representing the multiplier, b the multiplicand, and c

the product, we have

ab =z c,

whence we obtain

c J c

and hence arises division, and fractions, in which this division ter-

minates, when it cannot be performed without a remainder.

The repeated multiplication of a quantity by itself produces the

powers of this quantity ; if b represent the number of limes a is a

factor in the power under consideration, we have

a^ =: c.

This equation differs essentially from the preceding, as the quan-

tities a and b do not both enter into it of the same form, and hence

the equation cannot be resolved in the same way with respect to

both. If it be required to find a, it may be obtained by simply

extracting the root, and this operation gives rise to a new species

of quantities, denominated irrational ; but b must be determined by

peculiar methods, which I shall proceed to illustrate, after having

explained the leading properties of the equation a^ = c.
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240. It is evident, that if we assign a constant value greater than

unity to a, and suppose that of h to vary, as n:iay be requisite, we

may obtain successively for c all possible numbers. Making

J = 0, we have c i= I ; then since h increases, the corresponding

values of c will exceed unity rr.ore and more, and may be rendered

as great as we please. The contrary will be the case, if we suppose

h negative ; the equriion a^ :=. c being then changed into a"~^ z=i c,

or
-J-
= c, the values of c will go on decreasing, and may be ren-

dered indefinitely small. We may, therefore, obtain from the same

equation all possible positive numbers, whether entire or fractional,

upon the supposition, that a exceeds unity. The same is true, if

we have a <^ I ) only the order, in which the values stand, will be

reversed ; but if we suppose a = I, we shall always find c = 1,

whatever value be assigned to 6 ; we must, therefore, consider the

observations which follow, as applying only to cases, in which a

differs essentially from unity.

In order to express more clearly, that a has a constant value,

and that the two other quantities h and c are indeterminate, I shall

represent them by the letters x and y ; we then have the equation

a^ = y, in which each value of y answers to one value of a?, so that

either of these quantities may be determined by means of the other.

241. This fact, that all numbers may be produced by means of

the powers of one, is very interesting, not only when considered in

relation to algebra, but also on account of the facility with which it

enables us to abridge numerical calculations. Indeed, if we take

another number y^, and designate by a/ the corresponding value of

«, we shall have a^' =. y, and, consequently, if we multiply y by

y, we have

if we divide the same, the one by the other, we find

^- = ^4 = a^-';
y a^

lastly, if we take the m^^ power of y, and the n^^' root, we have

y^ z=z (a*)"* = a^

for the one, and

for the other.

Alg. 34

y^ =: (a'^)* = a«



266 Elements of Algebra.

It follows from the first two results, that knowing the exponents

(V and x^ belonging to the numbers y and y\ we may, by taking

their sum, find the exponent which answers to the product y?/^,

and by taking their difference, that which answers to the quotient

v'— . From the last two equations it is evident, that the exponent

belonging to the rn}^ power of y may be obtained by simple multi-

plication, and that which answers to the v}^ root, by simple division.

Hence it is obvious, that by means of a table, in which, against

the several numbers y, are placed the corresponding values of a;, y

being given, we may find co, and the reverse ; and the multiplica-

tion of any two numbers is reduced to simple addition^ because,

instead of employing these numbers in the operation, we may add

the corresponding values of x, and then seeking in the table the

number, to which this sum answers, we obtain the product requir-

ed. The quotient of the proposed numbers may be found, in the

same table, opposite the diflerence between the corresponding

values of a?, and, therefore, division is performed by means of sub-

traction.

These two examples will be sufficient to enable us to form an

idea of the utility of tables of the kind here described, which have

been applied to many other purposes since the time of Napier, by

whom they were invented. The values of a: are termed logarithms,

and, consequently, logarithms are the exponents of the powers, to

which a constant number must be raised, in order that all possible

numbers may be successively deducedfrom it.

The constant number is called the base of the table or system of

logarithms,

I shall, in future, represent the logarithm of y by 1 y ; we have

then X =z \y, and since y =^ a^ , we are furnished with the equa-

tion y = a^y,

242. As the properties of logarithms are independent of any

particular value of tbe number a, or of their base, we may form an

infinite variety of different tables by giving to this number all pos-

sible values, except unity- Taking, for example, a = 10, we
have y nz {Uf/^, and we discover at once, that the numbers

1, 10, 100, 1000, 10000, 100000, &c.,

which are all powers of 10, have, for logarithms, the numbers

0, I, 2, 3, 4, 5, &L€.
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The properties mentioned in the preceding article may be veri-

fied in this series; thus if we add together the logarithms of 10

and 1000, which are 1 and 3, we perceive, that their sum, 4, is

found directly under 10000, which is the product of the proposed

numbers.

243. The logarithms of the intermediate numbers, between 1

and 10, 10 and 100, 100 and 1000, &;c. can be found only by

approximation. To obtain, for example, the logaruhm of 2, we

must resolve the equation (10)^ = 2, by the metliod given in art.

221., finding first the entire number approaching nearest to the

value of 0?. it is obvious at once, that x is between and I , since

(10)^ = I, (10)^ = 10 ; we make therefore a? = -, the equation

then becomes (10)^ = 2, or 10 1= 2'; now z is found between 3

and 4 ; we suppose, therefore, z z=z ^ -{—-, and hence '

10 = 2 ^^' =: 2^ X 2^' == S X 2^'

;

or 2^^ = V == h
or, lastly.

As the value oi z' is between 3 and 4, we make

we have then

wJience we obtain

2 = (fr^"=(f)'.(f)'^

{it = 2 (^)» ^ HI. or (ifir = J ;

and after a few trials we discover that z^' is between 9 and 10.

The operation may be continued further ; but as I have exhibited

this process merely to show the possibility of finding the logarithms

of all numbers, I shall confine myseh' to the supposition of ;2:^' = 9
;

we have then, going back through the several steps,

^/ 2_8 ->. & 3 «n 2 8

This value of x, reduced to decimals, is exact to the fourth figure,

as it gives

X = 0,30107.
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By calculations carried to a greater degree of exactness, it is found,

that

X =z 0,5010300,

the decimal figures being extended to seven places.

Regarding this value of x as an exponent, we must conceive

the number 10 to be raided to the power denoted by the number

3010300, and the root of the result to be taken for the degree

denoted by 1 0^00000; we thus arrive at a number approaching

very nearly to 2 ; thai is (lo)'^

«

«^«^o^
:;= 2, very nearly; the first

member is a little greater than 2 ; but ( 1 0) ^ '^ « »
"

^ «
" is smaller.*

* The method explained in this article becomes impracticable,

when the numbers, the logarithms of which are required, are large
;

another method, however, which may be very useful, is given by

Long, an English geometer, in the Philosophical IVansactions for the

year 1724, No. 339.

As the process for determining x in the equation (10)^ z=: y is

very laborous, we may, reversing the order, furnish ourselves with the

several expressions for a;, then forming a table of the values of 3/ cor-

responding to those of X, we shall afterwards, as will be perceived, be

able, in any particular case, to determine x by means of y.

We take first for x the values co:nprehended between 0,1 and 0,9

;

we have then only to determine the value of y, which answers to

_1_

X := 0,1, or (10)' *', because the several other values of y, namely,

(lOp, (10)^, ifec.

are the 2^, 3d, <fec. powers of the first.

By extracting the square root, we discover ^t once, that

(10)* or (10)^'« =3,162277660;

then taking the fifth root of this result, we have

(10)^'®= 1,258925412.

By a similar process, we deduce from

(lO)TB — 1,258925412,

the value of

\l (lOy^ = (10)^'^ =: (10)^«« = 1,122018454;

then taking the fifth root, we have

(lO)T^o --- 1,023292992;
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244. By multiplying the logarithm of 2, successively by 2, 3, 4,

&c., we obtain logarithms of the numbers, 4, 8, 16, &£c., which are

the 2^, 3^ 4*^, &;c. powers of 2.

and raising the result to the 2'^ 3^, 9^^ powers, we obtain the

values of y, corresponding to those of x comprehended between 0,01

and 0,09.

It will be readily seen, that by this method, we may also find the

values of y for those of a; between 0,001 and 0,009, between 0,0001

and 0,0009 ; thus we shall be furnished with the following table.

Log.
1

Nat. Num. | Log. Nat. Num.

0,9
- 8
7

6
5

4

3
2
1

7,943282347
6,309573445
5,011872336
3,981071706
3,162277660
2,511886432
1,995262315
1,584893193
1,258925412

0,00009
8
7

6
5
4
3

2
1

1,000207254
1,000184224
1,000161194
1,000138165
l,00m 15136
1,000092106
1,000069080
1,000046053
1,000023026

0,09

8
7

6
5
4
3

2
1

1,230268771
1,202264435
1,174897555
1,148153621
1,122018454

1 ,096478196
1,071519305
1,047128548
1,023292992

0,000009
8
7

6
5
4
3
2
1

1,000020724
1,000018421
1,000016118
1,000013816
1,000011513
1,000009210
1,000006908
1,000004605
1,000002302

0,009
8
7

6
5
4

3
2
1

1,020939484
1,018591388
1,016248694
1,013911386
1,011579454
1,009252886
1,006931669
1,004615794
1,002305238

0,0000009

8
7

6
5
4
3
2
1

1,000002072
1,000001842
1,000001611
1,000001381
1,000001151
1,000000921
1,000000690
1,000000460
1,000000230

0,0009
8
7

6
5
4
3
2
1

1,002074475
1,001843766
1,001613109
1,001382506
1,001151956
1,000921459
1,000691015
1,000460623
1,000230285

0,00000009

8

7

6
5
4

3
2
1

1,000000207
1,000000184
1,000000161

1,000000138
1,000000115

1,000000092
1,000000069
1,000000046
1,000000023

By means of this table, we may find the logarithm of
whatever, by dividing it by 10 a sufficient number of

any number

times. To
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By adding to the logarithm of 2 the logarithms of 10, 100,

1000, &;c. we obtain those of 20, 200, 2000, &c. ; it is evident,

therefore that if we have the logarithms of the former numbers, we

obtain, for example, the logarithm of 2549, we first divide this num-

ber by (10)3 or 1000, which is the greatest power of 10 it contains;

we have then

2549 z= (10)3 X 2,549;

we then seek in the table the power of 10 immediately below 2,549,

and find

(10)0'4 — 2,511886432;

dividing 2,549 by this last number, we have

2,549 z= (10)0,4 X 1,014775177,

Again seeking in the table the power of 10 immediately below

1,014775177, we find

(10)0006, — 1013911386;

then dividing the preceding quotient 1,014775177 by this number, we

obtain a third quotient 1,000851742. This process is to be continued,

until we arrive at a quotient, which differs from unity only in those

decimal places we propose to neglect.

If we consider, in the present case, the third quotient as equal to

unity, the proposed number will be resolved into factors, which will

be powers of 10, for we shall have

2549 =(10)3 X (10)0,4 X (10)0,006 -,(10)3,406^

from which it is evident, that 3,406 is the logarithm of the number

2549. By extending the divisions to 7 in number, this logarithm will

be found to be 3,406369.

The same table enables us with still more ease to find a number by

means of its logarithm, as in the following example.

Let 2,547 be the given logarithm ; the numbei* sought will be

(10)2,547 -- (10)2 X (10)0.5 X (10)00,4 X (10)0'007
;

it will, therefore, be equal to the product of the numbers

(10)2 ~ 100,

(lOp z= 3,162277660,

(10)0,04 _, 1,096478196,

(10)0,007 _- 1,016248694,

taken from the table ; and will, consequently, be

2,547 — 1 . 352,357.

A table of the same kind with the above, but much more extended,

has been published in England, by Dodson, the object of which is to

furnish the means of finding the number answering to a given loga-

rithm.
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may 6nd the logarithms of all numbers composed of them, which

latter can be only powers or productsof the former. The number

210, for example, being equal to

2X3X5X7,
its logarithm is equal to

12 + 13 + 15 + 17,

and since 5 =. y, we have

15 zz: 110 — 12.

245. Logarithms, which are always expressed by decimals,

are composed of two parts, namely, the units placed on the left

of the comma, and the decimal figiu'es found on the right. The

first of these is called the characteristic^ because in the logarithms

under consideration, which are adapted to the supposition of

a =zz 10, and which are called common logarithms^ this part shows

to what order of units the number corresponding to the loga-

rithm belongs. The several logarithms of the numbers between

1 and 10, as they are between and 1, have, necessarily, for

their characteristic ; those of the numbers between 10 and 100,

have 1 for their characteristic ; those of the numbers between

100 and 1000 have 2; in general, the characteristic of a loga-

rithm contains as many units, as the proposed number has figures,

minus one.

246. It is important also to remark, that the decimal part of the

logarithms of numbers, which are decuple the one of the other, is

the same ; for example,

the logarithm of 54360 is 4,7352794,

5436 3,7352794,

543,6 2,7352794,

54,36 1,7352794,

5,436 0,7352794
;

for, as each of these numbers is the quotient of that which precedes

it, divide i by 10, the logarithm of the one is found by taking an

unit from the characteristic of that of the other (241,242).

247. According to what has been said in art. 240., the logarithms

of fractional nuaibers are, up )n our present hypothesis, negative
;

and we may easily deduce them from those of entire numbers,

if we observe that a fraction represents the quotient arising from

the division of the numerator by the denominator. When the

numerator is less thati the denominator, its logarithm is also less
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than that of the denominator, and, consequently, if we subtract the

latter from the former, the result will be negative.

In order to obtain the logarithm of the fraction ^, for example,

w^e subtract from 0, which denotes the logarithms of 1, the fraction

0,3010300, which represents that of 2 ; the result is

— 0,3010300.

If we subtract from Othe number 1,3010300, which is the logarithm

of 20, we have the logarithm of ^\, equal to

— 1,3010300.

The logarithm of 3 being 0,4771213, that of | will be

0,3010300— 0,4771213 = — 0,1 760913.

248. It is evident from the manner in which the logarithms of

fractions are obtained, that, considered independently of their

signs, they belong (241) to the quotients, arising from the division

of the denominator by the numerator, and, consequently, answer to

the number, by which it is necessary to divide unity in order to

obtain the proposed fraction. Indeed, |, for example, may be

exhibited under the form i^ and 1 1 nz 1 3 — 1 2 = 0,1760913.

It would be inconvenient, in order to find the value of a fraction,

to which a given negative logarithm belongs, to employ the number

to which the same logarithm answers when positive, since it would

be necessary to divide unity by this number ; but if we subtract

this logarithm from 1,2, 3, &c. units, the remainder will be the

logarithm of a number, which expresses the fraction sought, when

reduced to decimals, since this subtraction answers to the division

of the numbers, 10, 100, 1000, &£C. by the number to which the

proposed logarithm belongs.

Let there be, for example, — 0,3010300; if, without regarding

the sign, we take this logarithm from I, or 1,0000000, the re-

mainder, 0,6989700, being the logarithm of 5, shows, that the

fraction sought is equal to 0,5, since we supposed unity to be

composed of 10 parts.

If, in seeking the logarithm of a fraction, we conceive unity to

be made up of 10, or 100, or 1000, &c. parts, or which amounts

to the same thing, if we augment the characteristic of the loga-

rithm of the numerator by a number of units sufficient to enable us

to subtract that of the denominator from it, we obtain in this way a

positive logarithm, which may be employed in the place of that

indicated above.
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In order to introduce uniformity into our calculations, we most

frequently augment the characteristic of the logarithm of the nume-

rator by 10 units. If we do this with respect to the fraction f, for

example, we have

10,3010300— 0,4771213 :=i 9,8239087.

It will be readily seen, that this logarithm exceeds the negative

logarithm — 0,17609 J 3 by 10 units, and that, consequently,

whenever we add it to others, we introduce 10 units too much

into the result ; but the subtraction of these ten units is easily

performed, and by performing it we effect at the same time the

•subtraction of 0,1700913, Let JV be the number, to which we

add the positive logarithm 9,8239087 ; the result of the operation

will be represented by

JV+ 10 — 0,1760913.

and if we subtract 10, we have simply

JV— 0,1760913.

According to the preceding observations, we cause addition to

take the place of subtraction, by employing, instead of the number

to be subtracted, its arithmetical complement, that is, what remains,

when this number is subtracted from one of the numbers, 10, 100,

1000, &:c., a result which is obtained by taking the units of the

proposed number from 10 and the several other figures from 9^

We add this complement to the number, from which the proposed

logarithm is to be subtracted, and from the sum subtract an unit of

the same order as the complement.

Jt is evident, that if the complement is repeated several times,

we must subtract, after the addition, as many units of the same

order with the complement, as there are in the number, by which

it is multiplied ; and, for the same reason, if several complements

are employed, we must subtract for each an unit of the same order,

or as many units as there are complements, if they are all of the

same order.

Sometimes this subtraction cannot be effected ; in this case, th^

result is the arithmetical complement of the logarithm of a fraction,

and answers in the tables to the expression of this fraction reduced

to decimals. If 10 units remain to be taken from the characteris-

tic, as is most frequently the case, the result is the same as if we had

multiplied by 10000000000, the numerator of the fraction sought,

in order to render it divisible by the denominator; the cfaaracter-

Alg. 35
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istic of the logarithm of the quotient shows the highest order of the

units contained in this quotient, considered with reference to those

of the dividend. In 9,8239087, the characteristic 9 shows, that

the quotient must have one figure less than the number, by which

we have muhiplied unity; and, consequently, if we separate 10

iSgures for decimals, the first significant figure on the left will be

tenths ; and we shall find only hundredths, thousandths, &c., for

the numbers the arithmetical complements of which have 8, 7, he.

for their characteristics.

249. What has been said respecting the system of logarithms, in

which « ziz 10, brings into view the general principles necessary

for understanding the nature of the tables ; for more particular

information the learner is referred to the tables themselves, wiiich

usually contain the requisite instruction relating to their arrange-

ment and the method of using them. 1 will merely mention the

tables of Callet, stereotype edition, and those of Borda, as very

complete and very convenient.

250. If we have the logarithm of a number y for a particular

value of a, or for a particular base, it is easy to obtain the logarithm

of the same number in any other system. l( we have cf z=z y ',

for another base A, we have A"" =z y, X being different from cc
;

hence we deduce A"^ =z a"" . Taking the logarithms according to

the system, the base of which is a, we have

1 e/2^ = 1 a^
;

now \a^ =; x by hypothesis, and \ A"^ = X\A (241) ; therefore,

X\A = x, ov X =z
Y-jy

but if we consider A as a base, X will

be the logarithm of y in the system founded on this base ; if, there^

fore, we designate this last by hy, in order to distinguish it from

the other, we have

and we find the logarithm of y in the second system, by dividing its

logarithm taken in the first by the logarithm of the base of the

second system.

I ?/

The preceding equation gives also ^^ =: I A ) from which it is

evident, that whatever be the number y, there is between the loga-

rithms 1 y and L ?/j a ratio invariably represented by 1 A.



Theory of Exponential Quantities and of Logarithms. 275

251. In every system the logarithm of 1 is always 0, since

whatever be the value of a we have always a*^ =;: 1. As logarithms

may go on increasing indefinitely, they are said to become infinite

at the same time with the corresponding numbers ; and as, when y

is a fractional number, we have y =i —z=i «"*"% it is evident, that

in proportion as y becomes smaller, x in its negative state becomes

greater, but we can never assign for x a number, which shall ren-

der y strictly nothing. In this sense it is said, that the logarithm

of zero is equal to an infinite negative quantity, as we find in many

tables.

252. I now proceed to give some examples of the use, which

may be made of logarithms in finding the numerical value of for-

mulas. It follows from what is said in art. 241., and from the

definition of logarithms, by which we are furnished with the equa-

tion a^y = y, that

1(^2?) = \A + IB, \(^~^=zlA — \B,

n

Applying these principles to the formula

c^m EF

which is very complicated, we find

1 {A^ v^TT^) — 1 [^^ \/[Bj^C){B—C)\ —
2l^ + il(i?+ C) + tl(S-C),

1 (C vS3l:j^; = 1 C + I ID + 1 1£ + JlF,

and, consequently,

21.^ + 11(1?+ C) + il(J5-C)-lC-|lD-iIi;-ilF.

If we take the arithmetical complements of 1 C, 1 1 D, 1 1 JE, ^ 1 F,

designating them by C , D', E', jP', instead of the preceding

result, we have

21^ + |1 (2? + C) + 1 1 {B— C)+ + D^ + E^ + F\

only we must observe to subtract from the sum as many units of

the same order with the complements, as there are complements
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taken, that is 4. When we have found the logarithm of the pro*

posedj formula, the tables will show the number, to which this

logarithm belongs, which will be the value sought.

253. Logarhhras are of the most frequent use in finding the

fourth term of a proportion* It is evident, that H a : b : : c : d we

have

d =• — , whence Id =z \b 4- Ic — la;
a ' '

that is, the logarithm of the fourth term sought is equal to the surd

fyfihe logarithms of the two means, diminished by the logarithm of

the known extreme, or rather, to the sum of the logarithms of the

means, plus the arithmetical complement of the logarithm of the

known extreme.

254. If we take die logarithms of each member of the equation

- = -, which presents the character of a proportion, we have

\b — \a=z\d — \c (252);

whence it follows, that the four logarithms

la. 1& ilc.ld

form an equidifference (223.)

The series of equations,

leads also to

Ib-^-la t=:\c — \b =zld — lc=: \e~ld,8Lc.,

and hence we infer, that the progression by quotients,

-^ a : b : c : d : e, &c.

corresponds to the progression by differences,

-^\ a , \b . \c . \d Ae, he,

and, consequently, the logarithms of numbers in progression by

quotients, form a progression by differences,

255. If we have the equation b^ = c, we may easily resolve it

by means of logarithms ; for as 1 b^ is equal to z\b, we have

1 c *

zlh = 1 c, and, consequently, z =z -j. The equation b'^ ziz d may

be resolved in the same manner ; making cK =z u, we have

})^ =. d, u\b =:\d, w = T-T, or c* = y-r

;
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Again taking the logarithms, we find

2:lczz:l( — jz=:llrf — 116 and z z=i .

In this last expression, 1 1 h represents the logarithm of the loga-^

rithmof 6, and is found by considering this logarithm as a number.

z

The quantities, b^ , b^ , and all which are derived from them, are

called exponential quantities.

Application to finding the Logarithms of Literal Expressions.

1. log -"^ = log/+ log ^ — log c — log d.

2. log a^ b^ cP = m log a + n log 6 + p log c.

^' '°S dMT = ^ log a— w log 6— p log c— 5^ log d.

m p

4. log a* 6 ? c =t — log a— - log b + log c.

\
t m J)

6. log let* 6-" c« = — log a — log 6 + -i- log c.

n

6- log y^ =; log a 4- J log c — log 6 — i log d.

7. log
^ \ = nhg(a + b) + m log c— log (c -j- d)

(c+ d) v^
— I log d.

8. log
^^

^' ^„j^
- — m log (a + 6»).

9. log _J = _ 1 log (a + b).

V{a + b)ml 1
10. log v(«^— ^) =^ - log (a + 0?) + ^ log {a — x).

11. ^ log a = log a*.

12k n log a -j- m log 6 — ^ log c = log——

•

13. n log (« + j^) + log c—m log (a— y) = log 7^TJ^.

1 -un..=wv:l^-±li)14. -log(2a + 36)— |logc = log

Vc2
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Application to finding the Logarithms of Numerical Expressions.

1. log (93 X 3514) = 5.51428.

2. log (628 X 493) = 5.49G80.

5. log { = 0.09691.

4. log V = 0.74596.

5. log V = 0.66900.

6. log 15f — 1.19728.

^ , 319x765 oo^^r:^
7- ^og —^g = 3.24757»

S. log 3^5 — 7.15681.

9. log 5^7 = 18.87219.

10. log (1)14 _- 5.15167.

11. log (V)32 = 12.16675.

12. log V5 = 0.34948.

13. log V73567 = 2.43334.

14. logv/135 = 0.71011.

100

15. log V13 = 0.011139.

7

16. log ^'U = 0,08200.

17

17. log ^/{mf = 2.10321.

Calculation ofJYumerical Expressions by Logarithms,

7

L V8 = 1.34590

2. V35246 =: 13.70179

5

3. v'tI == 0.95932

4. VW? -= 1-1^0^4 ....

13

5. VYeV = 1.14605 . . .

6. (1)21 = 11.86322

7. (21)9= 11767.35

8. (Iffy^^ = 3.16810 . .
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9. V(f %/6) = 1.29569

10. 253 —- = 2016.914 . . .

11. V(2l + V19) = 1.4768

Questions relating to the Interest of Money.

256. The principles of progression by quotients and of loga-

rithms will be found to occur in the calculations relating to interest.

To understand what I have to offer on this subject it must be recol-

lected, that the income derived from a sum of money employed in

trade, or in executing some productive work, will be in proportion

to the frequency with which it is exchanged in either case. Hence

it follows, that he, who borrows a sum of njoney for any purpose,

ought, upon returning this money at the expiration of a given time,

to allow the lender a premium equivalent to the profits, which he

might have received, if he had employed it himself. Such is the

view in which the subject of interest presents itself. Jn order to

determine the interest of any sum, we compare this sum with 100

dollars taken as unity, having fixed the premium, which ought to

be allowed for this last at the end of a particular term, one year for

example. I shall not here consider those things, which, in the

different kinds of speculation, occasion the rise and fall of interest

;

this belongs to the elements of political and commercial arithmetic,

which should be preceded by some account of the doctrine of

chances. My object in what follows is simply to resolve certain

questions, which refer themselves to progression by quotients.

To present this subject in a general point of view, I shall sup-

pose the annual premium, allowed for a sum 1, to be represented

by r, r being a fraction ; it is evident, that the interest of a sum

100, for the same time, will be J 00 r, that of any sum whatever a

will be denoted by a r ; if we designate this last by «, we have

a =1 ar.

By means of this formula, it is easy to find the interest of any sum

whatever, when that of 100 or of any other sum, for a known time,

is given
;

questions of this kind belong to what is called simple

interest.

257. But if the lender, instead of recieving annually the interest
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of his money, leaves it in the hands of the borrower to accutnulate,

together with the original sum, during the following year, the value

of the whole at the end of this year may be found in the following

manner. The original sum being a, if we add to it the interest

a r, it becomes at the end of the first year

a -f- c^ ^ = « (1 + ^)>

Now if we make

a (1 + r) = a^

the interest of the sum a^ for one year being a' r, that of the sum

a (I + r) vvill.be, for a second year, a r (1 + r) ; and as, at the

end of the first year, the principal a augmented by the interest,

becomes a [I + ^), the principal a' amounts at the end of the

second year, to

d{l + r) = a{l + rf -= a^

If the lender does not now withdraw the sum a^^, but leaves it to

accumulate during a third year, at the end of this, it will become,

according to what precedes,

«// (1 -I- r) = a (I + rf =;= a''\

It will be readily perceived, that a'^^ will become at the eqd pf the

fourth year

tt'//(l j^ r) ^ a{l -^^ r)\

and so on; and that, consequently, the sum first lent, and the

several sums due at the end of the first, second, third, fourth, &c,

years, form the following progression by quotients

;

-H-a:a(l-+r) :a(l +r)2:a(l +rf:a{l + r)* : &c.

of which the quotient is 1 + r, and the general term

a{\+rY = A,

the number n representing the number of years, during which the

interest is suffered to accumulate.

If the rate of interest be 5 per cent., for example, that is, if for

100 dollars during one year 105 dollars are paid back ; we have

100r=5, or r = ^f^ = ^V, and 1 + r = |i.

If we would know to what the sum a amounts, when left to accu^-

mulate during 25 years, we have

n =z 25, and a (^^A

instead of the original sum. The 35tb power of fj m^y be easily



Formulas relating to Interest. 281

found by means of logarithms, since we have (252)

1 ('^jy = 25 1
11 zz: 25 (1 21 — 1 20) = 0,5297322,

which gives

^j =3,386 nearly, ^ = 3,386 a
;

and hence it may be readily seen, that 1000 dollars will in this

way amount at compound interest to 3386 dollars, at the end of

25 years.

If the sum lent were for 100 years, we should have

r21\ioo
13] a

nearly; thus 1000 dollars would produce, at the end of this pe-

riod, a sum of 131000 dollars nearly. These examples will be

sufficient to show with what rapidity sums accumulate by means of

compound interest.

258. The equation

A =: a{l -{- r)'S

gives rise to four questions ; the first, which is to find A, when

a, r, and n, are known, presents itself, whenever we seek the

amount of the principal at the end of a number ?i of years. I

have already given an example of this.

The second, which is to find r, when a, A, and n, are known,

occurs whenever it is required to d'^termine the rale of interest by

means of the original sum, the whoie amount that has become due,

and the time during which it has oeen accumulating ; we have in

this case

n

1 + r =

The third, which is to find a, when A, r, and n are known, the

formula for which is

A
^-(l + r)n'

has for its object to determine the principal, which it is necessary

to employ in order to be entitled after a number n of years, to a

gum A.

The fourth, which is to find u, when A, a, and r are known,

can be resolved only by means of logarithms (238, 252). Taking

Alg. 36
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the logarithm of each member of the proposed equation, we have

\A=z\a + n\{l +r),

whence

1 ^ — 1 a
n =2 :

1 (1 + r)

By means of this last equation we determine how many years the

principal a must remain at interest in order to amount to a sum A^

To illustrate this by an example, I shall suppose that it is re-

quired to find the time in which the original sum will be doubled,

the rate of interest being 5 per cent. ; we have

A = 2 a, 1^=:1« + 12,

and, consequently,

— 1? — ^^ _ 0,3010300 _
^ ~*

Ifi ~"
1 21— 120 ~ 0,0211893

~"
' '

nearly.

259. The following question is one of the most complicated,

that we meet with relating to this subject. We suppose, that the

lender during a number n of years, adds each year a new sum,

to the amount of this year ; it is required to find what will be the

value of these several sums, together with the compound interest

that may thence arise at the expiration of the term proposed. Let

a, J, c, J, ... . k, be the sums added the first, second, third,

fourth, &c. years ; the sum a remaining in the hands of the bor-

rower during a number n of years, amounts to

a{l+rY;
the sum 6, which remains n — 1 years only, becomes

b{i + ry-\

the sum c, which remains n— 2 years only, becomes

c(l+r)«~2^

and so on ; the last sum, k, which is employed only one year,

becomes simply

k{l+r);

we have, therefore,

A = a{l + ry + 6(1+ r)«--i + c (1 + ry^^ +k{l + r).

By calculating the several terms of the second mumber separately,

we obtain the jvalue of A.



Formulas relating to Annuities. 233

The operation is very much simplified when

for in this case we have

^ zzz a (1 + r)^ + a(l + r)«-i+ a(l + r)"-^ + a(l + r)
;

the second member of this equation forms a progression by quo-

tients, of which the first term is a (1 + r), the last term a {I -j- r)'*,

the quotient 1 *-|- r, and the sum, consequently,

we have, therefore, in this case,

^ ^ a(l+r)[(l+r)n-l]
_

r

This equation gives rise also to four questions corresponding to

those mentioned in connexion with the equation

Az=za{l+r)\

260. By reversing the case we have been considering, we may

represent those annual sums, or sums due at stated intervals,

called anniiiiies ; here the borrower discharges a debt with the

interest due upon it, by different payments made at regular peri-

ods. These payments, made by the borrower before the debt

in question is discharged, may be considered, as sums advanced

to the lender toward the discharge of the debt, the value of

which sums will depend upon the interval of time between the

payment and the expiration of the annuity. Thus, if we repre-

sent each sum by a, the first payment, which will take place

n— I years before the expiration of the term of the annuity,

referred to this time, is worth a (1 + ry-^ ; the second referred

to the same epoch, is worth only a (1 -}- r)"-^ 5 the third,

a (I 4- r)*^"^, and so on to the last, which amounts only to the

value of a. But on the other hand, the sum lent being represented

by A^ will be worth in the hands of the borrower, after n years,

A [\ -^ rY , which must be equal to the amount of the several

payments advanced by him to the lender ; we have, therefore,

^ (1 + r)^= a ( I + r)«~i+ « (1 + rf-^+a (1 -j- rf-^., . + a,

or taking the sum of the progression, which constitutes the second

member

^ (1 + .)« = -JlL±iLziL\
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an equation, in which we may take for the unknown quantity, suc-

cessively, the quantity t/2, which I shall call the value of the annu-

ity, because it is the sum, which it represents, the quantity a,

which is the quota of the annuity, the quantity r, which is the rate

of interest) and lastly, the quantity 7i, which denotes the term of

the annuity. In order to find this last we must have recourse to

logarithms. We first disengage (1 + r)"*, which gives

(1 +rf^ V,^ ' '' a— Ar
then taking the logarithms, we have

nlfl -f r) =r la — l(a — ./Sr),

whence

\a — I (« — Ar)
" - r(i + r) •

261. To give an instance of the application of the above for-

mulas, I shall take the following question
;

To find what sum must be paid annually to cancel in 12 years a

debt of 100 dolls, with the interest during that time, the rate of

interest being 5 per cent.

In this example the quantities given are

A = 100, n=:l2, r = ~,

and the annuity a is required to be found ; resolving the equation

with reference to the letter a, we have

The values of the letters, A, r, and n, are to be substituted in this

expression ; and it will be found most convenient in the first place

10 calculate, by the help of logarithms, the quantity (1 + r)",

which becomes (|J)^^; and

(1^)12 =1,79586.

By means of this value we obtain •

_ 100 . ^V . 1,79586 _ 5.1,79586 ^^^ 1,79586—1 "^ 0,79586 '

and, determining the values of this last expression either directly

or by means of logarithms, we find

a = 11,2826;
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an annuity of 11,28 dolls., therefore, is necessary to cancel in 12

years a debt of 100 dolls., the rate of interest being 5 per cent.

2G2. I am prevented from entering into further details on this

subject by the limits I have prescribed myself in this treatise ; I

will merely add, therefore, that in order to compare the values of

different sums, as they concern the person, who pays or receives

them, they must be reduced to the same epoch, that is, we must

find what they would amount to when referred to the same date.

A banker, for instance, owes a sum a payable in n years ; as an

equivalent he gives a note, the nominal value of which is repre-

sented by J, and which is payable in p years, the first sum at the

time the note is 2:iven, is worth only-;—;—— , because it must beo
7 -^ 1 -j- r)"

considered as the original value of a principal, which amounts to a

at the expiration of n years ; the sum h, for the same reason, is

worth at the time the note is 2;iven 7^—;—:— ; the difference
^ (1 -f-

r)P '

a b

(I +^ ~ (l+r)P

represents, therefore, according as it is positive or negative, what

the banker ought to give or receive by way of balance ; if this bal-

ance is not to be paid until after a number of years denoted by q,

c representing its value at the time the exchange is made, it will

amount at the expiration of this term, to

c (I + ry-,

so that it will be equivalent to

((nF,y-(r^)(^ + '-> = «(i + '-)'~''-^(i+'->-^-

The several sums, a, b, k, in art. 259., were reduced to

the time of the payment of the sum A, and in art. 260., each of the

payments, as well as the sum A, was referred to the time, when

the annuity was to cease

Questions relating to Interest and Annuities.

1. A capital of 5000/. stands at 4 per cent, compound interest.

What will it amount to in 40 years ? Ans. 24005.103/.

2. What will 3200/. amount to at 3 per cent, in 80 years ?

Ans. 34050,84/.
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3. How long must a capital a remain at the interest^ to become

as much as a capital a' at the interest p^ for n years ?

^ log a' 4- n loor p' — ]oq a
Ans. —^ 1—5

—

^-^ ^— years.
logp

4. How long must 3600Z. remain at 5 per cent, compound

interest so that it may become as much as 5000/. at 4 per cent, for

12 years? Ans, 16 years, nearly.

5. What is the amount of capital which at the interest p for n

years is of equal value with a capital a^ for n^ years at the interest

p^ ? Ans, log a = log a^ -^ n^ , log p^— n log p.

6. What is the amount of a capital which stands at 4 per cent,

that 15 years hence it may be equal in value with 4500Z. at 6 per

cent, for 9 years ? Ans, 4221/., nearly.

7. What is the rate of interest that a capital a m n years may

be equal to a capital a' in n^ years at the interest p^ ?

Jns. Jog p = i"g «' + >»' log P'-log_g.

8. How long must a capital stand at 4 per cent, compound

interest that it may double itself; and how long that it may be

tripled.

Ans. It doubles itself in between 17 and 18 years, and triples

itself in between 28 and 29 years.

9. An usurer lent a person 600/. and drew up for the amount a

bond payable in 3 years bearing no interest. What did he take

per cent, reckoning compound interest ?

Ans, 10 per cent., nearly.

10. A capital of 800/. increased in the space of 6 years to

3600/. What did it gain per cent. ?

Ans. 28| per cent., nearly.

11. A person enjoys an annuity of 500/. for six years. How
much ready money can a person give him for this annuity, calcu-

lating 3i per cent.?
'

Ans. 2664/. bs. lOd.

12. What is the present value of an annuity of 350/. assigned

for 8 years at 4 per cent. ? Ans. 2356/. 9^. 2d., nearly.

13. A debt due at this present time amounting to 1200/. is to

be discharged in seven yearly and equal payments. What is the

amount of these payments if the interest be calculated at 4 per

cent. } Ans. 2001. , nearly.

14. A person wishes to obtain an annuity of 2000/. for 34580/.

For how many years can this annuity be granted him, computing

the interest at 4 per cent. ^ Ans, About 30 years.



NOTES.

(Referred to Page 86.^

In articles (SQ and 75 I have interpreted the negative solutions by

the examination of the equation, which they immediately verify, .tlss I

had done before, and this method appeared to me always exact, as

the object is merely to show, that these solutions have a rational

sense, since they resolve questions analogous to the one proposed;

but there are often several w^ays of forming these questions, and the

following, which was communicated to me by M. Fran^ais, a distin-

guished geometer. Professor at the School of Artillery of Mayence,

seemed to me more simple, than that given in these Elements.

^^ He thinks, that we ought to leave out of the enunciation of the

question of art. 65. the idea of the departure of the couriers, and to

suppose them to have been travelling from an indefinite time; the

question then would be slated thus. Taw roiiricrs travel the same

route in the same direction C A B C (page 77) ; after they have pro-

ceeded^ each a certain time, one finds himself in A at the instant that

the other is in B ; their distance and rate of going are known ; it is

asked at ivhat point of the route they vnll encounter each other ?

This enunciation leads to the same equation, as that of art. 65.

;

but " the continuity of the motion being once established, the nega-

tive solution admits of an explanation without the necessity of chang-

ing the direction of one of the couries. Indeed, since their motion

does not commence at the points A and B, but both, before arriving

at these points, are supposed to have been going in the same manner

for an indefinite time from O toward jB, it is easy to conceive, that

the courier, who at this point is in advance of the one at A, who
travels slower, must at a certain time have been behind him and over-

taken him before his arrival at the point A, The sign — then indi-

cates (as in the application of Algebra to Geometry) that the distance

AR' is to be taken in a direction opposite to AR, which is regarded

as positive. The change to be made in the enunciation, to render

the negative solution positive, is reduced to supposing, that the two
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couriers must have come together before their arrival at the point A,

instead of its taking place afterward."

Indeed, when we place the point R' between A and C, instead of

putting it between A and B, we find AB z=. BR' — AR'\ whence

results the equation y — a: z=: «, instead of x — y :=: a^ which we
first obtained ; and there is no need of changing the sign of c, the

. . x y
second equation remainmg - =z -.

M. Francais applies not less happily these considerations to the

case of art. 75., by substituting, for the couriers, moveable bodies,

subjected to a continued motion commencing from an indefinite time.

He enunciates the problem thus; *' Two moveable bodies are carried

uniformly in a straight line CB (page 85) one in the direction BC,

and the other in the direction CB icith given velocities ; that, which is

carried in the first direction, is found in B, a hioivn number of hours

before the other has arrived at A ; it is ashed, at what 'point of the

indefinite straight line BC their meeting takes place ?

'* The solution x = — 48'^"^S' implies, that the two moveable bodies

met at the point R, before that, which is carried from C towards B,

had reached the point A, and that the second, which moves from B
towards C, was at the point C, where he is found when the other is at

the point A.^'

The position assigned to the point R, verifies itself by observing,

that there results from it AC = BC— AB z=z c d— a, instead of

a -[- c c?, as first obtained (page 85,) and, consequently,

X c d— a— X

b
^

c
'

an equation which gives x — 48.

In this manner there is no change to be made in the direction of

the motion ; indeed there is a difference in the circumstances of the

problem, and as I said before, this proves, that there are several phy-

sical questions corresponding to the same mathematical relations.

But the enunciations, here given, have the advantage of not breaking

the law of continuity, and this is derived from the consideration of

lines, which represent in a manner the most simple and general, the

circumstances of a change of sign in magnitudes. TSec the Elemen-

tary Treatise of Trigonometry and Application of Algebra to Ge-^

ometry.)



(Note referred to Page 203.^

It may be tliouglit, that in order to discover the roots of any equa-

tion of the fourth degree

x^ -\- p x^ -\- q T^ -{- r X -[- s zm {)
<)

it would be sufficient to compare it with the product of article 183.,

observi !g to put equal to eacli other the quantities by which the same

power of a; is muhiplicd ; and it is in this manner that most elemen-

tary writers think to demonstrate, that an equation of any degree

whatever is the product of as ?nani/ simple factors^ as there are units

in the exponent of its degree. It will be seen by what follows, that

the reasoning by which this is attempted to be proved, is defective.

We stated the proposition with qualification in article 182., because it

is necessary, in order to establish it unconditionally, to show that an

equation of whatever degree has a root, real or imaginary, which is

not easily done in an elementary work, and which happily is not

necessary. Some remarks relating to this subject may be found in

the Supplement.

By forming the equations,

-— a — h — c — d z=i p,

a b -\- a e ~\~ a d -[- I) c -\~ h d -]~ c d z=z q,

— aJ) e — ah d— a c d — h c d =:z r,

a b e d ^=1 s,

in order to deduce from tlicm the value of the letters, a, b, c, r/, the

roots of the proposed equation, the calculation would be very compli-

cated, if, in the determination of the unknown quantities, <?, b, c, d^

we adopt the method of article 78; but if we multiply the first of the

above equations by rP, the second by «-, the third by a, and add these

three products to the fourth, member to member, we shall have

— a4 :;^
J)

fjf3 _j_ q (fp. j^ r a -\- 5,

from which we derive, by simple transposition,

a'^ -{- p d'^ -\- q a^ -|- r a -|- ^"^ = 0.

This equation contains only a, but it is entirely similar to the one

proposed. The difficulty of obtaining (/, therefore, is the same as that

of obtaining x.

" Thus," says Castillon (IMem. de Berlin, annee I7S9,) '«
it is

shown in every work on algebra, that an equation of any degree we

please, is formed of several sinq)le binomials, but it is not so evident

that an equation, formed by the multiplication of several simple bino-

mials, can have such coefficients as we please."

Alg 37
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If, instead of multiplying the first three equations in «, &, c, ^, by

«3^ a2^ and a, respectively, we multiply them by Jx^, 6'^, and 6, or by

c^, c^, c, or d?, (Pj d, and add the products to the fourth equation, we

shall have in the first

-^ M z=: ]J b^ -{- qb''^ -{- rb -{- s,

in the second

in the third

zr: 2^ c^ -{- q c^ -{- r c -{- s,

^d^ — pd^ + qd^ + rd-^s',

from which it follows, that we are conducted to the same equation in

the case of «, in that of 6, &lc. Indeed the quantities, a, b, c, d, being

all disposed in the same manner in each equation, it is not to be sup-

posed that one should be determined by a different operation from

that of the others ; and, in general, if in the investigation of several

unknown quantities, we are obliged to employ for each the same rea-

sonings, the same operations, and the same known quantities, all

these quantities will necessarily be roots of the same equation.



QUESTIONS FOR PRACTICE

LACROIX'S ALGEBRA.

1. Mditio7i, Art. 18.

1. Add the quantities x -\- y z -{- A2— 29 a;— yz— 9.

Ans. 33— 28 «.

2. Add 147 « + 23 5 — a— 6 + 2 «.

Ans. 148 a + 22 6.

3. Add n a + il ah + li ah c— ii a + ah— U ab c.

Ans. 12 a b.

4. Add 43 a — 27 c— 20 a + 7 c— 61 6 — 21 a + 57 6

+ 20c.

A71S. 2 a— 4 b.

5. Add a+ 9 d + a— l c + Sx— a + 6^ + 6c — 7»
— 14 ^.

Ans. a— c -^d --{- cc.

6. Add 7 a b c + 6 a b + 5c— (x6c + 21a: + 9c—27,ry

+ 8a6c+ 10 x—9^ z + iO b + 3lx— 2ab—c + bxy
— abc+23z.

Ans.l3abc + 4ab + 13 c + 10 6 + 62 x— 22 x y~60z.

II. Subtraction, Art. 20.

7. From 6x— S y + 3

subtract 2a? + 9y— 2. Ans. 4 x— 17y + 5.

8. From 5xy— 8

subtract— 3jz;_y,+ .1. -
^ Ans. 8xy— 9.

9. From 4 xy--^x -\- xy
subtract 2 xy -{-2 -{- xy.

^- — '»' Ans.2xy— x— 2.

10. From 5x+x—S— 4b
subtract 6 a:—- 10 + 4 b — x. Ans. 2 + a?— Sb.
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11. From 148 a + 47 ah—2Sabc+ l — x

subtract 99 a— 41 a b— Sab c— 2 + 4 x.

Ans. 49 a + 94 a b— l^ a b c + 3 -^ 5 X.

12. From 7 i— 8 c + 32G x7j—42b + Ulc + a

subtract — 500 i— 22 a— 87 .xm/— 7 c.

Ans. 464 b + 22 a + 110 c + 413 a? y.

III. Multiplication, Art, 32.

13. Multiply 12 « a; by 3 a. / Ans.36a^x.

14. Multiply 3 xy— 8 + 2 xy z hy x y.

Alls. 3 x^ y^— 8 X y + 2 x^ y^ z.

1 5. Multiply 12 0^2— 4 ?/2 by — 2 x^,

Ans.— 24x^^ + 8x^7/.

16. Multiply x^ + x^y + xy-^ + y^ hj x— y,

Ans, x"^— ?/'*.

17. Multiply x^ + xy + y^ by x^— ^ y -\- ]/*

Ans, x^ -f- x^ y^ -j- y^*

18. Multiply 3 x^_ 2 .r y + 5 by -x^ + 2 ^ 7/— 3.

Ans, 3 x^ + 4x^y— 4 0?— 4 x^ y^ + 16 xy— 15.

19. Multiply 3x^ + 2x''y- + 3 y^ by 2 x^— 3 .xY + 5 7/,

Ans, 6 x^— 5 x^ 1/2 + 21 x^ y'^— 6 x^ y^ + x^ ^^ + 1 5 /.

IV. Division, Art, 46.

20. Divide 10.x'-^y

—

15
y^— ^y^Y^li-

Ans, 2x^—3y— 1.

21. Divide Sa^— 15 + 6a + 36by3a.
5 b

Ans, a h 2 H—

.

22. Divide 6 a?^— 96 by 3 ^— 6.

^715. 2 a;3 + 4 aj2 4- 8 a; + 16.

23. Divide 48a:3— 76 aoi^— 64 a^o? + 105 a^by 2aj— 3a.

^n5. 24a;2— 2aa:— 35a^

V. Reduction of Fractions, Art, 50 and 52.

ITT • c X+ x^
24. What is the greatest common measure of —^Jl '2

^

Ans. c + X,



Questions for Practice, 293

x^ 1

25. What is the cfreatest common measure of ;—

?

Ans, X -]- 1.

x'^—y^^
26. What is the greatest common divisor of -^

^X 1/

Ans, x^—y^,

x^ h^
27. Reduce-T 7^-0 to its lowest terms.

Ans, x^ — h^ gr. c. d. and -

—

j^
— lowest terms.

28. Keduce -^5

—

r-Tr—ir o , . ^
^^—3 ^^^ ^^s lowest terms.

a? X + ^Z a^ %'" -h 2 a x^
-f-

x^

t) CC I ;) c(y X
Ans. a^ X zv, c. d. and ^ ,

—

—

—r~h lowest terms.
' ° a- X -|- a X- -j- x^

29 3 2 X 2 X
. Reduce 7, ~, and a -j

'- to equivalent fractions having

a common denominator.

. da Sax ,12r/2-f24a;

12 « 12 a 12(2

1 ^2 3;2 _1_ ^-/S

30. Reduce-' TV) ^n^ —r— to fractions having; a common
2 3 X + a ^

denominator.

^ 3 X + 3 « 2 0-2 X + 2 ri3 , 6 x2 + 6 a2

b X -\- b cr b X + ba bx -\-b a

31. Reduce ^r—7, r/--? ^^^^ - to fractions havine; a common de-
2 a^ Za a ^

nominator.

^ 2«2 6 2a3c j4a3cZ
./^/25. --7—7-) -1—j-j and -7—5-

•

4a4' 4 a^
' 4a^

VI. Multiplication and Division of Fractions, Art. 51.

32. What is the product of - and
,

^
i*^ a a-j- c

x^+ax
Ans, -K-T •

a^-^ ao
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33. What is the product of — ,
—^, and -7^?

Ans. 9 ax,

34. What is the product of —,— and VT— ?

X . 2 :?•

35. What is the quotient of- divided by -—- ?

Ans. 11.

36. What is the quotient of -~— divided by —r- ?

Ans» 7"
'

4 X

a;4 ^4
37. What is the quotient of

^ ^ .

. , / g
divided by

x^ + bx. . h^

r- . Ans, X A .

X'— b ' X

VII. Addition and Subtraction of Fractions^ Art, 53.

38. Add X + —_r to 3 0^ + ^-^~.'3 '4
lOa;— 17

Ans, 4 a: + 12

39. Add -5-j -7- J and r^— together.
3 4' 5 ^

,j 169 3; + 12 ^
,
49x , 1

•^^^^-
^bli

^^^^+60" + 5-

T X X
40. Add together 4 x, —, and 2 + =.

^ 158a; ^ 23 x

45 ' 4d

41. From —)^— subtract -,. Ans, ^~r—

^

.

b d b d

42. From -^^ subtract -rr- . Ans, -r^ .

43. From 3 a? + r subtract x H—,

c
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VIII. Prohlems in Simple Equations, Art, 82.

44. In 5 a: — 15 z=i % x -{- 6 to find the value of x,

Ans. X =z 7.

45. In 3y — 2 + 24 zz: 31 to find y.

Ans. ?/ = 3.

46. In the equations '—^ 1- Sy = 31 and '^- [- lOo? =
192 to find X and y.

Ans, uT = 19 and y =2 3,

47. Out of a cask of wine, which had leaked away one thirds

21 gallons were drawn, and then being gauged it was found to be

half full : how much did it hold ? Ans. 126 gallons.

48. What two numbers are those, whose difference is 7 and

sum 33? Ans, 13 and 20.

49. What number is that from which if 5' be subtracted, two

thirds of the remainder will be 40 ? Ans, 65.

50. At a certain election 375 persons voted, and the candidate

chosen had a majority of 91 votes : how many voted for each

candidate ? Ans, 233 for one, and 142 for the other.

51. A post is I in the mud, ~ in the water, and 10 feet above

the water : what is its whole length ? A7is, 24 feet.

52. A man arriving at Paris, spent the first day
J-

of the money

he brought with him, the second day l, and the third day |, after

which he had only 26 crowns left : how much did he have on

arriving at Paris ? Ans. 120 crowns.

53. A horse said to a mule, if I give you one of my sacks we

shall be equally loaded, if 1 take one of yours I shall have twice as

much as you : how many sacks had each ?

Ans, The horse 7 and the mule 5.

54. A man being asked how many crowns he had, replied, if

you add together a half, a third, and a quarter of what I have, the

sum will exceed the number of crowns I have by one : what was

the number ? Ans. 12.

55. A privateer running at the rate of 10 miles an hour discov-

ers a ship 18 miles off making way at the rate of 8 miles an hours;

:

how many miles can the ship run before being overtaken ?

Ans. 72 miles, or 9 hours.
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66. A hare is 60 leaps before a grey-hound, and takes 4 leaps

to the grey-hound's 3 ; but two of the grey-hound's leaps are as

much as three of the hare's : how many leaps must the grey-hound

take to catch the hare ? Ans. 300.

57. A person being asked his age, replied, that J of his age

multiplied by ^'2 ^^ ^^^^ '^^^ would gi\e a product equal to his age ;

what was his age? Ans. 16.

68. A person has a lease for 99 years ; and being asked how

much of it was already expired, answereci, that two thirds of the

time past wac equal to four fifths of the time to come : what was

the time past ? Ans, 54 years.

69. There is a fish whose tail weighs 9 !bs., his head weigljs as

much as his tail and half his body, and his body weighs as much

as his head and tail : what is the whole weight of the fish ?

Ans, 72 lbs.

60. There is a certain number, consisting of two digits, the sum

of which digits Is 5 ; and if 9 be added to die number itself the

digits will be inverted : what is the number ? Ans, 23.

61. A person found, upon beginning the study of his profession,

that \ of his life hitherto had passed before he commenced his

education, \ under a })rivate teacher, \ at a public school, and four

years at the university : what was his age ?

Ans. 21 years.

62. To find a number such, that whether it be divided into two

or three equal parts, the continued product of its parts shall be

equal to the same quantity. Ans, 6|.

63. A person has two horses and a saddle worth 50/. : now if

the saddle be put on the back of the fijst horse, it will njake his

value double that of tlie second ; but if it be put on the back of the

second, it will make his value triple that of the fii'st : what is the

value of each horse ? Ans, one 30/. and the other 40/,

64. To divide the number 90 into four such parts that if the

first be increased by 2, the second diminished by 2, the third

multiplied by 2, and the fourth divided by 2, the sun], difference,

product, and quotient, shall each equal the same quantity.

Ans. The pajts are 18, 22, 10, and 40.

65. By his will a father disposed of his property as follows -,

namely, to his oldest son he gave 100 dollars of the property, and
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a tenth part of the residue ; to the second, 200 dollars and a tenth

part of the residue ; to a third, 300 dollars and a tenth part

of the residue ; and so on lo the last, always increasing the

sum first paid out by 100 dollars. It appeared that the portions of

all the children were alike. Required the value of the property,

the number of children, and the portion of each child.

Ans» The estate was 8100 dollars, the children 9, and the por-

tion of each 900 dollars.

66. A and B have the same income ; A is extravagant and

contracts an annual debt amounting to ^ of his income ; but B
lives upon | of his ; at the end of 10 years, B lends A money

enough to pay off his debts, and has 160Z. to spare : what is their

income ? Ans. 2S0l.

67. A person passed ^ of his age in childhood, y\ in youth, |
and 5 years besides in matrimony, at the end of which time he

had a son, who died 4 years before his father, and reached only

half his father's age ; at what age did the father die ?

Ans. 84.

68. A shepherd, driving a flock of sheep in time of war, meets

with a company of soldiers, who plunder him of half his flock and

half a sheep over ; and he receives the same treatment from a

second, third, and fourth company, each succeeding company

plundering him of half the flock the last had left and half a sheep

beside, insomuch that in the end he had only 8 sheep left : how
many sheep had he in the beginning?* jins. 143,

69. A person, fifteen years after he was married, being asked

the age of himself and of his wife at the time of their marriage,

replied, that he was then thrice as old as his wife, but that now he

was only twice as old ; what were their ages ?

Arts. He was 45 and she 15.

70. It is required to find two numbers such that the first added

to half the second shall make 20, and the second added to one

third the first shall also make 20. Arts. 12 and 16.

71. Two travellers, distant 154 miles, set out at the same time

to meet each other, the one proceeding at the rate of 3 miles in 2

hours, and the other at the rate of 5 miles in 4 hours : how long

and how far did each travel before they met ?

Arts. The lime was 56 hours, the speces travelled 84 and 70

miles.

Alg. 38
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IX. Formation of Fotmrs and Extraction of Roots.

72. What is the square root of 9 aP ? (Art. 122.)

Jlns. 3 sc.

73. What is the square root of ^^ ? dns. J-^^.4a3 2a^a
74. What is the square root of a^+ 4a^a) + 6 a^ x^ + 4ax^ +

x^ ? {Art. 124.) Ans. a^ + 2ax + xK

75. What is the square root of x"^ — 2x^ +f^x^—^ -j- ~
/& 2 16

Ans. 0^ ^— X -\' \.

76. What is the third power of— 8 ^^ j^ p ^^^^^ ^^l,)

Am. — bnx^yK
77. What is the fifth root of— 32 x^ y^^ ? [Art. 129.)

Ans, — 2xy\
78. What is the fourth power of a? — a ? {Art. 141.)

Ans. x^ — Ax^ a + Qx^a^ — 4 a? a^+ a\

79. What is the square of a^ + 2 a a? + a?^ ? {Art. 145.)

./2n5. a* + 4 a^x + ^ a^ x^ + A a x^ + x^.

80. What is the cube root of a?® — 6 a?^ + 1 5 o?^ — 20 a?^ -f-

15a^_6a?+l? {Art. Ibb.) Ans. x^— 2x + I.

ei, What is the fifth root of 32 x^— 30 a?^ + 80 x^ — 40 x^

+ 10a?— 1? Ans. 2a? — Jl,

DNP,
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