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Preface

This booklet is a revision of the author's lecture to high
school students taking part in the Mathematics Olympiad at
Moscow State University. It gives a review of the results and
methods of the general theory of algebraic equations with due
regard for the level of knowledge of its readers. No proofs are
included in the text since this would have required copying almost
half of a university textbook on higher algebra. Despite such an
approach, this booklet does not make for light reading. Even a
popular mathematics book calls for the reader's concentration,
thorough consideration of all the definitions and statements; check
of calculations in all the examples, application of the methods
described to his own examples, etc.





A secondary school course of algebra is diversified but equations
are its focus. Let us restrict ourselves to equations with one
unknown, and recall what is taught in secondary school.

Any pupil can solve first degree equations: if an equation

ax+b=O

is given, in which a -=1= 0, then its single root is

b
X= -­

a

Furthermore, a pupil knows the formula for solving quadratic
equations

ax 2 + bx + c = 0
where a -=1= 0:

- b ± Vb2
- 4acx = -------::..----

2a

If the coefficients of this equation are real numbers and if the
number under the radical sign is positive, i. e. b2

- 4ac > 0, then
this formula yields two different real roots. But if b2

- 4ac = 0,
our equation has a single root; in this case the root is called
a multiple one. For b2

- 4ac < 0 the equation has no real roots.
Finally, a pupil can solve' certain types of third and fourth­

degree equations whose solution is easily reduced to that of quadratic
equations. For example, the third-degree (cubic) equation

ax 3 + bx 2 + ex = 0

which has one root x = 0, and. after factoring- out x, is transformed
into a quadratic equation

ax' + bx + c = 0
9



A fourth-degree (quartic) equation

. ay4 + by2' + c = 0

called biquadratic, may also be reduced to a quadratic equation
by setting y2 = x, calculating the roots of the resulting quadratic
equation and then extracting their square roots.

Let us emphasize once again that these are only very special
types of cubic and quartic equations. Secondary school algebra
gives no methods of solving arbitrary equations of these degrees,
and all the more so of higher degrees. However, we encounter
higher degree algebraic equations in different branches of engineering,
mechanics and physics. The theory of algebraic equations of an
arbitrary degree n, where n is a 'positive integer, has required
centuries to develop and now constitutes one of the main parts
of higher algebra taught at universities and pedagogical institutes.

1. Complex Numbers

The theory of algebraic equations is essentially based on the
theory of complex numbers taught at high school. However,
students often doubt the justification for introducing these
numbers and their actual existence. When complex numbers
were introduced, even mathematicians doubted their actual
existence, hence the term "imaginary numbers" which still
survives. However, modern science sees nothing mysterious
in the complex numbers, and they are no more "imaginary" than
negative or irrational numbers.

The necessity for complex numbers was caused by the fact
that it is impossible to extract a square root of a negative real
number and still remain in the field of real numbers. As a result
some quadratic equations have no real roots; the equation

x 2 + 1 = 0

is the simplest of such equations. Is there a way to expand the
realm of numbers so that these equations also possess roots?

In his study of mathematics at school the student sees
the system of numbers at his disposal constantly extended. He
starts with integral positive numbers in elementary arithmetic. Very
soon fractions appear. Algebra adds negative numbers, thus forming
the system of all rational numbers. Finally, introduction of irrational
numbers results in the system of all real numbers.

Each of these consecutive expansions of the store of numbers
makes it possible to find roots for some of the equations which
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previously had no roots. Thus, the equation

2x-l=O

acquires a root only after fractions are introduced, the equation

x+l=O

has a root after the introduction of negative numbers, and the
equation

x2 - 2 = O

has a root only after irrational numbers are added.
All this completely justifies one more step on the way to

enlarge the store of numbers. We shall now proceed to a general
outline of this last step.

It is known that if a positive direction is fixed on a given
straight line, if the origin 0 is marked, and if a unit of scale is
chosen (Fig. 1), then each point A on this line can be put in

o
I

FIG. I

A
I •

correspondence with its coordinate, i. e. with a real number which
expresses in the chosen units of scale the distance between A
and 0 if A lies to the right of the point 0, or the distance
taken with a minus sign, if A lies to the left of O. In this manner
all the points on the line are put in correspondence with different
real numbers, and it can be proved that each real number will
be used in the process. Therefore we can assume that the points
of our line are images of the real numbers corresponding to them,
i. e. these numbers are as if aligned along the straight line.
Let us call our line the line of numbers.

But is it possible to expand the store of numbers in such a
way that new numbers can be represented in just as natural a
manner by the points of a plane? So far we have not constructed
a system of numbers wider than that of real numbers.

We shall start by indicating the "material" with which this new
system of numbers is to be "constructed", i. e. what objects will
act as new numbers. We must also define how to carry out
algebraic operations - addition and multiplication, subtraction and
division - on these objects, i. e. on these future numbers. Since
we want to construct numbers which can be represented by all the
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points of the plane, the simplest way is to consider the points of
the plane themselves as the new numbers. To seriously consider
these points as numbers, we must merely define how to carry out
algebraic operations with them, i. e. which point is to be the
sum of two given points of the plane, which one is to be their
product, etc.

Just as the position of a point on a straight line is completely
defined by a single real number, its coordinate, the position
of an arbitrary point on a plane can be defined by a pair of real
numbers. To do this let us take two perpendicular straight lines,
intersecting on the plane at the point 0 and on each of them
fix the positive direction and set off a unit of scale (Fig. 2). Let

II

o

III

FIG. 2

IV

us call these lines coordinate axes, the horizontal line the abscissa
axis, and the vertical line the ordinate axis. The coordinate axes
divide the entire plane into four quadrants, which are numbered
as shown in Fig. 2.

The position of any point. A in the first quadrant (see Fig. 2)
is completely defined by two positive real numbers, e. g. the
number a which gives in the selected units of scale the distance
from this point to the ordinate axis (the abscissa of point A),
and the number b which gives in the selected units of scale its
distance from the abscissa axis (the ordinate of the point A).
Conversely, for each pair (a, b) of positive real numbers we can
indicate a single precisely defined point in the first quadrant
with a as its abscissa and b as its ordinate. Points in other
quadrants are defined in a similar manner. However, to ensure
a mutual one-to-one correspondence between all the points' of the
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plane ~- and the pairs of coordinates (a, b), i. e. in order to
avoid the same pair of coordinates (a, b) corresponding to several
distinct points on the plane, we assume the "abscissas of points in
quadrants I I and I I I and the ordinates of points in quadrants
I I I and I V to be negative. Note that points on the abscissa axis
are given by coordinates of the type (a, 0), and those on the
ordinate axis by coordinates of the type (0, b), where a and b
are certain real numbers.

We are now able to define all the points on the plane by
pairs of real numbers. This enables us to talk further not of a
point A, given by the coordinates (a, b), but simply of a point
(a, b).

Let us now define addition and multiplication of the points
on the plane. At first these definitions may seem extremely
artificial. However, only such definitions will make it possible to
realize our goal of taking square roots of negative real numbers.

Let the points (a, b) and (c, d) be given on the plane. Until
now we did not know how to define the sum and the product
of these points. Let us call their sum the point with the abscissa
a + c and the ordinate b + d, i. e.

(a, b)+ (c, d) = (a + c, b + d)

On the other hand, let us call the product of the .given points
the point with the abscissa ac - bd and the ordinate ad + be, i. e.

(a, b) (c, d) = (ac - bd, ad + bc)

It can easily be checked that the above-defined operations on
the points on the plane possess all the familiar properties of
operations on numbers: addition and multiplication of points on
the 'plane are commutative [i, e. both addends and co-factors can
be interchanged); associative (i. e. the' sum and the product of
three points are independent of the position of the brackets) and
distributive (i. e. the brackets can be removed). Note that the law
of association for addition and multiplication of points makes it
possible to introduce in an unambiguous way the sum and the
product of any finite number of points on the plane.

Now we can also perform the operations of subtraction and
division of points on the plane, inverse to addition and multiplication,
respectively (in the sense that in any system of numbers, the
difference between two numbers can be defined as the number
which when added to the subtrahend yields the minuend, and the
quotient of two numbers as the number which when multiplied

13



by the divisor yields the dividend). Thus,

(a, b) - (c, d) = (a - c, b - d)

(a, b) = ( ac + bd be - ad )
(c, d) c2 + d2

' c2 + d2

The reader will easily see that the product (as defined above)
of the point on the right-hand side of the last equality by the
point (c, d) is indeed equal to the point (a, b). It is even simpler
to verify that the sum of the point on the right-hand side of
the first equality and the point (c, d) is indeed equal to the
point (a, b).

By applying our definitions to the .. points on the abscissa axis,
i. e. to the points of the type (a, 0), we obtain:

(a, 0) + (b, 0) = (a + b, 0)

(a, 0)(b, 0) = (ab, 0)

i. e. addition and multiplication of these points reduce to addition
and multiplication of their abscissas, The same is valid for subtraction
and division:

(a, 0) - (b, 0) = (a - b, 0)

~=(!!- 0)(b, 0) b '

If we assume that each point (a, 0) of the abscissa axis represents
its abscissa, i. e. the real number a, in other words, if we
identify the point (a, 0) with the number q, then the abscissa
axis will be simply turned into a line of numbers. We can now
assume that the new system of numbers, constructed from the
points on the plane, contains in particular all the real numbers
as points of the abscissa axis. '

The points on the ordinate axis, however, cannot be identified
with real numbers. For example, let us consider the point (0, 1)
which lies at a distance 1 upward of the point o. Let us denote
this point by the letter i:

i = (0, 1)
I

and let us find its square in the sense of multiplication of the
points on the plane:

;2 =(0,1)(0,1)=(0.0-1.1,0.1 + 1.0)=(-1,0)

14



However, the point (- 1, 0) lies on the abscissa axis, not on the
ordinate axis, and thus represents a real number - 1, i. e.

i2 = - 1

Hence, we have found in our new system of numbers a number
whose square is equal to a real number - 1, i. e. we can now
find the square root of - 1. Another value of this root is given
by the point - i = (0, - 1). Note that the point (0, 1), which
we denoted as i, is a precisely defined point on the plane, and
the fact that it is usually referred to as an "imaginary unity"
does not in the least prevent it from actually existing on the plane.

The system of numbers we have just constructed is more
extensive than that of 'real numbers and is called "the system of
complex numbers. The points on the plane together with the operations
we have defined are called complex numbers. It is not difficult to
prove that any complex number can be expressed by real numbers
and the number i by means of these operations. For example, let
us take point (a, b). By virtue of the definition of addition, the
following is valid:

(a, b) = (a, 0) + (0, b)

The addend (a, 0) lies on the abscissa axis and is therefore a real.
number a. By virtue of the definition of multiplication, the second
addend can be written in the form

(0, b) = (b, 0)(0, 1)

The first factor on the right-hand side of this equality coincides
with a real number b, and the second factor is equal to i.
Therefore,

(a, b) = a + bt

where addition and multiplication are understood as operations on
the points of the plane.

By means of this standard notation of complex numbers we can
immediately rewrite the above formulas for operations with complex
numbers: .

(a + bi) + (c + di) = (a + c) + (b + d)i

(a + bi)(c + di) = (ac - bd) + (ad + bc)i

(a + bi) - (c + di) = (a - c) + (b - d)i

a + bi ac + bd bc - ad .
c + di - c2 + d2 + c2 +d2 I

15
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It should be noted that the above definition of multiplication
of the points of the plane is in perfect agreement with the law
of distribution: if on the left-hand side of the second of the above
equations we calculate the product by the rule of binomial
multiplication (which itself stems from the" law of distribution),
and then apply the equality i2 = - 1 and reduce similar terms,
we shall arrive precisely at the right-hand side of the second
equation.

2. Evolution.
Quadratic Equations

Having complex numbers at our disposal, we can extract square
roots not only of the number - 1, but of any negative real
number, always obtaining two distinct values. If - a is a negative
real number, i. e. a > 0, then

~=±~i

where ~ is the positive value of the square root of the
positive number a.

Returning to the solution of the quadratic equation with real
coefficients, we can now say that where b2

- 4ac < 0, this equation
also has two distinct roots, this time complex.

Now we are able to take square roots of any complex numbers,
not only real ones. For instance, if a complex number a + bi is
given, then

where the positive value of the radical Va2 + b2 is taken in both
terms. Of course, the reader will see that for any a and b both
the first term on the right-hand side and the coefficient in i will
be real numbers. Each of these two radicals possesses two values
which are combined with each other according to the following
rule: if b > 0, then the positive value .of one radical is added
to the positive value of the other, and the negative one to the
negative value of the other; if, on the contrary, b < 0, then
the positive value of one radical is added to the negative value
of the other.
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Example. Extract the square root of the number 21 - 20i. Here

1
2(21 + 29) = ± 5

Since b = - 20, i. e. b < 0, we must combine the values of the
last two radicals with opposite signs, i. e.

V21 - 20i ". ± (5 - 2i)

Knowing how to take square roots of complex numbers, we
can now solve quadratic equations with arbitrary complex coef­
ficients. Indeed, the derivation of the formula for solving quadratic
equations still holds for complex coefficients, and the calculation
of the square root in this formula can be reduced, as shown
above, to evolution of square roots of two positive real numbers.
Hence, a quadratic equation with arbitrary complex coefficients
has two roots, which may in fact coincide, i. e. yield a single
multiple root.

Example. Solve the equation
x 2

- (4 - i)x + (5 - 5i) = 0

Applying the formula, we obtain

(4 - i) ± V(4 - i)2 - 4 (5 - 5i) (4 - i) ± V- 5 + 12i
x = 2 = ~----'-2----

Calculating the square root in this expression by the method
described in the preceding section, we find that

. ,

v- 5 + 12i = ± (2 + 3i)

and thus

x=
(4 - i) ± (2 + 3i)

2·

17



Therefore, the roots of our equation are the numbers

Xl = 3 + i, X2 = 1 - 2i

It can easily be checked that each of these numbers indeed'
satisfies the equation.

Let us now turn to the problem of extracting roots of an
arbitrary positive integral index n from complex numbers. It can
be proved that for any complex number a. there exist exactly n
distinct complex numbers such that raised to the power n (i. e.
if we take a product of n factors equal to this number), each
yields the number (1. In other words, the following extremely
important theorem holds:

. A root of order n of any complex number has exactly n
distinct complex values.

This theorem is equally applicable to real numbers, which are
a particular case of complex numbers: the nth root of a real
number a has precisely n distinct values which in a general case
are complex. We know that among these values there will be
two, one or no real numbers, depending on the sign of the number
a and parity of the index n.

Thus, the cube root of one has three values:

1 V3 1 V3
1 - - + i-and - - - i-
, 2 2 2 2

It is easily verified that each of these three numbers, raised to
the power three, yields unity. The values of the root of the' order
four of unity are the numbers

1, - 1, i and - i

/ In section 1- we gave the formula for taking the square root
of a complex number a + bi. This formula reduces calculation
of the root to extracting square roots of two positive real numbers.
Unfortunately, for n > 2 no formula exists which would express
the nth root of a complex number a + pi in terms of real values
of radicals of certain auxiliary real numbers; it was proved that
no such formula can ever be derived. Roots of order n of complex
numbers are usually taken by representing the complex numbers
in the so-called trigonometric form; however, this subject will not
be treated in this booklet.

18



3. Cubic Equations

The formula for solving quadratic equations is also valid for
complex coefficients. For third-degree equations, usually called cubic
equations, we can also derive a formula, which, although more
complicated, expresses with radicals the roots of these equations
in terms of coefficients. This formula is also valid for equations
with arbitrary complex coefficients.

Let an equation

x3 + ax: + bx + c = 0

be given. We transform this equation, setting

a
x=Y-3

where y is a new unknown. Substituting this expression of x into
our equation, we obtain a cubic equation with respect to y, which
is simpler, since the coefficient of y2 will be zero. The coefficient
of the first power of y and the absolute term will be, respectively,
the numbers

a2 2a3 ab
p = - T + b, q = n - T + c

i. e. the equation can be written as

y3 + py + q = 0

a
If we subtract "3 from the roots of this new equation, then we

obtain the roots of the original equation.
The roots of our new equation are expressed in terms of its

coefficients by the following formula:

We know that each of the three cube radicals has three values.
However, these values cannot be combined in an arbitrary manner.
It so happens that for each value of the first radical, the value
of the second must be chosen, such that their product equals

19



the number - ~. These two values of the radicals must be added

together to obtain a root of the equation. Thus we obtain the
three roots of our equation. Therefore, each cubic equation with
numerical coefficients has three roots, which in a general case. are
complex; obviously, some of these roots may coincide, i. e. constitute
a multiple root.

The practical significance of the above formula is extremely
small. Indeed, let the coefficients p and q be real numbers. It
can be shown that if the equation

y3 + py + q = 0

has three distinct real roots, then the expression

q2 p3
4+27

will be negative. Since the expression IS under the square root
sign in. the formula, extracting this root will yield a complex
number under each of the two cube root signs. We mentioned
above that extraction of cube roots of complex numbers requires
trigonometric notation, but this can be done only approximately,
.by means of tables.

Example. The equation

x 3
- 19x + 30 = 0

does not contain a square of the unknown, and therefore we apply
the above formula to this equation with no preliminary transforma­
tions. Here p = - 19, q = 30, and hence

q2 p3 784
4+ 27=-27

i. e. the result is negative. The first of the cube radicals in the
formula yields

3 3

v-~+Vq2
+ p3 = V-15+V_1784

2 4 27 27

3

V-15+i~

We cannot express this cube radical in terms of the radicals of
real numbers and thus cannot find the roots of our equation by

20



this formula. But a direct verification demonstrates that these roots
are the integers 2, 3· and - 5.

In practice the above formula for solving cubic equations yields
2 3

the roots of equations only when the expression .;- + i7 is po-

sitive or equal to zero. In the first instance the equation has one
real and two complex Toots; in the second instance all the roots
an~ real but one of them is multiple.

Example. We want to solve the cubic equation

x 3
- 9x 2 + 36x - 80 = 0

Setting
x=y+3

we obtain the "reduced" equation

y3 + 9y - 26 = 0

Applying the formula, we obtain

2 3

!L + L = 196 = 142

4 27

One of the values of this cube radical is the number 3. We know
that the product of this value and the corresponding value of the
second cube radical in the formula must be equal to the number

-~, i. e. it must be equal to the number - 3. Therefore the

value of the second radical will be the number - 1, and one of
the roots of the reduced equation is

Yl = 3 + (- 1) = 2

Knowing one of the roots of the cubic equation, we can
obtain the other two in many different ways. For instance, we

3
could find the other two values of V27:calculate the corresponding
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values. of the second radical and add up the mutually correspond­
ing values of the radicals. Or we may divide the left-hand side
of the reduced equation by y - 2, after which we only need to
solve a quadratic equation. Either of these methods will demonstrate
that the other two roots of our reduced equation are the numbers

- 1 + iV!2 and - 1 - iVU
Therefore, the roots of the original cubic equation are the numbers

5, 2 +. iVU and 2 - iVU
Of course, calculation of radicals is not always as easy as

in the carefully selected example discussed above; much more often
they have to be calculated approximately, yielding only approximate
values of the roots of an equation.

4. Solution of Equations
in Terms of Radicals

and the Existence of Roots
of Equations

Quartic equations also allow a formula to be worked out
which expresses the roots of these equations in terms of their
coefficients. Involving still more "multi-storied" radicals, this formula
is much more complicated than the one for cubic equations,
and its practical application is very limited. However, this formula
shows that any quartic equation with numerical coefficients has
four complex roots, some of which may be real.

The formulas for solving third- and fourth-degree equations
were found as early as the 16th century, and attempts were
begun to find a formula for solving equations of the fifth and
higher degrees. Note that a general form of an equation of degree
n, where n is a positive integer, is

The search continued unsuccessfully until the beginning of the
19th century, when the following spectacular result was proved:

For any n; greater than or equal to five, no formula can be
found which would express the .roots of any equation of degree n
by its coefficients in terms of radicals.

22



In addition, for any n, greater than or 'equal to five, an
equation can be written of degree n with integral coefficients,·
whose roots are not expressible in radicals, however complicated,
if the radicands involve only integral or fractional numbers. Such
is the .. equation

x 5
- 4x - 2 = 0

It can be proved that this equation has five roots, three real
and two complex, but none of these roots can be expressed in
radicals, i. e. this equation is "unsolvable in terms of radicals".
Therefore, the store of numbers, both real and complex, which
form the roots of equations with integral coefficients (such numbers
are called algebraic as opposed to transcendent numbers which
are not the roots of any equations with integral coefficients), is
much greater than that of the numbers which can be written in
terms of radicals.

The theory ofalgebraic numbers is an important branch of algebra;
Russian mathematicians E. I. Zolotarev (1847-1878), G. F. Voronoi
(1868-1908), N. G. Chebotarev (1894-1947) made valuable contribu­
tions in this field.

Abel (1802-1829) proved that deriving general formulas for
solving equations of degrees n ~ 5 in terms of radicals was
impossible. Galois (1811-1832) demonstrated the existence of
equations with integral coefficients, unsolvable in terms of radicals.
He also found the conditions under which the equation can be
solved in terms of radicals. This required a new, profound theory,
namely the group theory. The concept of a group made it
possible to finally settle this problem. -Later it found numerous
other applications in various branches of mathematics and other
sciences and became one of the most important objects of study
in algebra. We shall not present the definition of this concept
but shall only mention that presently Soviet mathematicians are
pioneering in the development of group theory.

As far as practical determination of roots of equations is
concerned, the absence of formulas for solving nth degree equations
where n ~ 5 causes, no serious difficulties. Numerous methods of
approximate solution of equations suffice, and even for cubic equations
these methods are much quicker than the application of a formula
(where applicable), followed by approximate evolution of real
radicals. However, the existence of the formulas for quadratic,
cubic and quartic equations makes it possible to prove that these
equations possess two, three or four roots, respectively. But what
about the roots of nth degree equations?

23



If there were equations with numerical coefficients, either real
or complex, which possessed no real or complex roots, the store
of real numbers would have to be extended. However, this is
unnecessary since complex numbers are sufficient to solve any
equation with numerical coefficients. The following theorem holds:

Any equation ofdegree n with any numerical coefficients has n roots,
complex or, in certain cases, real; some of these roots may coincide,
i. e. form multiple roots.

This theorem is called the basic theorem of higher algebra.
It was proved by D'Alembert (1717-1783) and Gauss (1777-1855)
as early as the 18th century, although these proofs were perfected
to complete rigorousness only in the 19th century; at present
there exist several dozen different proofs of this theorem.

The concept of a multiple root, mentioned in the basic theorem,
means the following. It can be proved that if an nth degree
equation

has n roots Ctb Ct2, ... , Ctm then the left-hand side of the equation
can be factored in the following manner:

Conversely, if such a factorization is given for the left-hand side
of our equation, the numbers (Xh (X2, ... , (Xn will be .the roots
of this equation. Some of the numbers among (Xt, (X2, ... , (Xn may
happen to be equal to one another. If, for exainple, (Xl = (X2'= ...

... = (Xk, but (Xl # (x, for I = k + 1, k + 2,;' ... , n, i. e. in the
factorization in question the factor x - (Xl appears k times, then
for k > 1, the root (Xl is called a multiple one, or, more precisely,
a k-fold root.

5. The Number of Real Roots

The basic theorem of higher algebra has important applications
in theoretical research, but it provides no practical method for
solving the roots of equations. However, many technical problems
require information about the roots of equations with real coefficients.
Usually a precise knowledge of these roots is not necessary, since
the coefficients themselves are the results of measurements and
thus are known only approximately; their accuracy depending
on the accuracy of the measurements.
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Let' an nth degree equation be given

having real coefficients. We already know that it has n roots.
Are any of them real roots? If so, how many and approximately
where are they located? We can answer these questions as follows.
Let us denote the polynomial on the left-hand side of our equation
by f(x), i. e.

f(x) = aoxn+ alX
n- 1 + ... + an-IX + an

The reader familiar with the concept of function will understand
that we treat the left-hand side of the equation as a function of
the variable x. Taking for X an arbitrary numerical value a.. and
substituting it into the expression for f(x), after performing all the
operations, we arrive at a certain number which is called the value
of the polynomial f(x) and is denoted as f(a..). Thus, if

f(x) = x 3
- 5x2 + 2x + 1

and a.. = 2, then

f(2) = 23
- 5· 22 + 2· 2 + 1 = - 7

Let us plot a graph of the polynomial f(x). To do this we
choose the coordinate axes on the plane (see above) and, having
selected for x a value a.. and calculated a corresponding value f( a..)
of the polynomial f(x), we mark a point on the plane with the.
abscissa a.. and the ordinate f( cx), i. e. a point (a.., f( cx)). If it
were possible to do this for all e, then the points marked on
the plane would form a curve. The points at which this, curve
.intersects the abscissa axis or is tangent to it yield the values
of a.. for which f( a..) = 0, i. e. the real roots of the equation in
question.

Unfortunately, since there are an infinite number of the values
of a. one cannot hope to find the points (cx, f( a..)) for all of them
and must be satisfied with a finite number of points. For the
sake of simplicity we can first select several positive and negative
integral values of a.. in succession, mark on the plane the points
corresponding to them and then draw through them as smooth
a curve' as possible. It can be shown that it is sufficient to take
only the values of a.. which lie between - Band B, where the
bound B is defined as follows: if IaoI is the absolute value of the
coefficient with x" (we remind the reader that Ia I = a for a > 0
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and Ia I = - a for a < 0) and A is the greatest of the absolute
values of all the other coefficients ab a2, ... , an - b an, then

A
B=~+1

However, it is often apparent that these bounds are too wide.
Example. Plot a graph of the polynomial

f(x) = x3
- 5x2 -i- 2x + 1

Here IaoI = 1, A = 5, and thus B = 6. Actually, for this particular
example we can restrict ourselves to only those values of cx, which
fall between - 1 and 5. Let us compile a table of values of the
polynomial f(x) and plot a graph (Fig. 3).

ex f(ex)

-1 -7
0 1
1 -1
2 -7
3 -11
4 -7
5 11

The graph demonstrates that all the three roots cx l' CXi and CX3

of our equation are real and that they are located within the
following bounds:

- 1 < CXl < 0, 0 < CX2 < 1, 4 < CX3 <.5

We notice that plotting the graph was not really necessary: its
intersections with the abscissa axis are found between such
neighbouring values of cx for which the numbers f( cx) have opposite
signs, and thus it was sufficient just to look at the table of
values of f(cx).

If in our example we found less than three points of intersection
of the graph with the abscissa axis, we .might think that owing
to the imperfection of our graph (we traced the curve knowing
only seven of its points), we could overlook several additional
roots of the equation. However, there are methods which make it
possible to determine exactly the number of real roots of the
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equation and even the number of roots located between any given
numbers a and b, where a < b. These methods will not be stated.
here.

Sometimes the following theorems y

are useful since they give some in­
formation on the existence of real
and even positive roots.

Any equation of an odd degree
with real coefficients has at least one
real root.

If the leading coefficient ao and
the absolute term an in an equation
with real coefficients have opposite
signs, the equation has at least one
positive root. In addition, ifour equation x
is of an even degree, it also has at least
one negative root.

Thus, the equation

~ X
7

- 8x3 + X - 2 = 0

has at least one positive root,' while
the equation

x6 + 2x 5
- x 2 + 7x - 1 = 0

FIG. 3

has both a positive and a negative root. All this is readily
verified by means of a graph.

6. Approximate Solution
of Equations

In the previous section we found those neighbouring integers
between which the real roots of the equation

x 3
- 5x 2 + 2x + 1 = 0

are located. The same method allows the roots of this equation
to be found with greater accuracy. For example, let us take the
root (X2' located between zero and unity. By calculating the values
of the left-hand side of our equation f(x) for x = 0.1; 0.2, ...;
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0.9, we can find between which two of these successive 'values
of x the graph of the polynomial f(x) intersects the abscissa axis,
i. e. we can now calculate the root (X2 to the accuracy of one-tenth.

Proceeding further, we can find the value of the root (X2 to
the accuracy of one-hundredth, one-thousandth or, theoretically,
to any accuracy we - want. However, this approach involves
cumbersome calculations which soon become practically unman­
ageable. This has led to the development of various methods of
calculating approximate values of real roots of equations much
quicker. Below we present the simplest of these methods and
immediately apply it to the calculation of the root (X2 of the
cubic equation considered above. But first it is useful to find
bounds for this root narrower than the ones we already know,
o< (X2 < 1. For this purpose we shall calculate our root to the
accuracy of one-tenth. If the reader calculates the values of the
polynomial

f(x) = x3
- 5x2 + 2x + 1

for x = 0.1; 0.2; ...; 0.9; he will obtain

f(0.7) = 0.293, f(0.8) = - 0.088

and therefore, since the signs of these values of f(x) are different,

0.7 < (X2 < 0.8

The method is as follows. An equation of degree n is given,
whose left-hand side is denoted by f(x); it is already known that
one real root (X of this equation (not a multiple root) lies between
a and b, a < b. If the bounds a < (X < b are already .sufficiently
close, then definite formulas make it possible' to find for the root
(X the new bounds c and d, which are much closer, i. e. which
define much more precisely the position of this root. The result will
be either c < (X < d or d < (X < c.

The bound c is calculated by means of the formula

bf(a) - af(b)
c =-...;,-.........----:-

f(a) - f(b)

In this case a = 0.7, b = 0.8, and thy values of f(a) and f(b)
are given above. Therefore

28

c=
0.8·0.293 - 0.7· (- 0.088 )

0.293 - ( - 0.088)
0.2344 + 0.0616 = 07769

·0.381 ....



The formula for the bound d requires the introduction of a new
concept which will play only an auxiliary role here; in essence
it belongs to a different branch of mathematics called differential
calculus.

Let a polynomial of degree n be given

Let us call the polynomial of degree (n - 1)

j'(x) = naoxn - t + (11 - 1) G1 X n- 2 + (11 - 2) U2 X"- 3 + ...
... + 2an - 2 X + £In - 1

a derivative. of this polynomial, and denote it as f'(x). This
polynomial is derived from f(x) by the following rule: each term
akxn-k of the polynomial f(x) is multiplied by the exponent
n. - k of x, while the exponent itself is reduced by unity; moreover,
the absolute term an disappears, since we can consider that an = anxo.

We can again take the derivative of the polynomial f' (x).
This will be a polynomial of degree (n - 2), which is called the
second derivative of the polynomial f(x) and is denoted as f" (x).

Thus, for the above polynomial f(x) = x 3
- 5x2 + 2x + 1 we

obtain
f'(x) = 3x2

- lOx + 2

f"(x) = 6x - 10

The bound d is now calculated by one of the following
formulas:

f(a) f(b)
d = a - f'(a)' d = b - f' (b)

The following rule indicates which of these two formulas must be
chosen. If the bounds a, b are chosen sufficiently close to each
other, the second derivative f" (x) will usually have the same sign
for x = a and x = b, while the signs of f(a) and f(b) will be
different, as we know. If the' signs of f" (a) and f(a) are the
same, d must be calculated with the first formula, i. e. the one
in which the bound a is used, however if the signs of f"(b)
and f(b) coincide, the second formula, involving the bound b, must
be used.

In the above example the second derivative f"(x) is negative
both for a = 0.7 and for b = 0.8. Therefore, since f(a) is positive
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and j(b) negative, the second formula for the bound d must be
used. Since j'(0.8) = - 4.08, we obtain

- 0.088
d = 0.8 - _ 4.080 = 0.8 - 0.0215 ... = 0.7784 ...

Thus for the root (X2 we have found the following bounds,
narrower than those we knew before:

0.7769 ... < (X2 < 0.7784 ...

or, if we widen these bounds somewhat,

0.7769 < (X2 < 0.7785

It follows, therefore, that if we take for (X2 the arithmetic mean,
i. e. half the sum, of the calculated bounds,

(X2 = 0.7777

the error will not exceed 0.0008, equal to half the difference of
these bounds.

If the resulting accuracy is insufficient, we could once again
apply the above method to the new bounds of the root (X2.

However, this would require much more complicated calculations.
Other methods of approximate solution of equations are more

accurate. The best method, that permits the approximate calculation
of not only the real but also the complex roots of equations,
was devised by the great Russian mathematician N. I. Lobachevsky
(1793-1856), the creator of non-Euclidean geometry.

7. Fields

The problem of roots of algebraic equations, which we have
already encountered above, can be considered in more general
terms. To do so we must introduce one of the most important
concepts of algebra.

Let us first consider the following three systems of numbers:
the set of all rational numbers, the set of all real numbers, and
the set of all complex numbers. Without leaving their respective
bounds, we can add, multiply, subtract and divide (except for
division by zero) in each of these systems of numbers. This
distinguishes them from the system of all integers where division
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is not always possible (for example, the number 2 cannot be
divided by 5 without a remainder), as well as from the system
of all positive real numbers, where subtraction is not always possible.

The reader is already familiar with performing algebraic operations
not on numbers such as addition and multiplication of polynomials,
and also addition of forces encountered in physics. Incidentally,
in defining complex numbers we also had to consider addition and
multiplication of points of the plane.

In general terms, let a set P be given, consisting either of
numbers, of geometrical objects, or of some arbitrary objects which
we shall call the elements of the set P. The operations of addition
and multiplication are defined in P if for each pair of elements
a, b from P one precisely defined element c from P is indicated,
and called their sum:

c=a+b

and a precisely defined element d from P, called their product:

d = ab

The set P with the operations of addition and multiplication defined
within it is called a field, if these operations possess the following
fi ve properties:

I. Both operations are commutative, i. e. for any a and b

a + b = b + a, ab = ba

II. Both operations are associative, i. e. for any a, band c

(a + b) + c = a + (b + c), (ab) c = a (bc)

III. The law of distribution of multiplication with respect to
addition holds, i. e. for any a, band c

a (b + c) = ab + ac

IV. Subtraction can be carried out, i. e. for any a and b
a unique root of the equation

a+x=b

can be found in P.
V. Division can be carried out, i. e. for any a and b, provided

a does not equal zero, a unique root of the equation

ax = b
can be found in P.
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Condition V mentions zero. Its existence can be derived from
Conditions I-IV. Indeed, if a is an arbitrary element of P, then
because of Condition IV a definite element exists in P which
satisfies the equation

a+x=a

(a itself is taken for b). Since this element may depend upon the
choice of the element a, we designate it by 0a, i. e.

a + Oa = a (1)

If b is any other element of P, then again there exists one such
unique element O, for which

(2)

If we prove that Oa = O, for any a and b, then the existence
in the set P of an element, which plays the role of zero for all
the elements a at the same time, will be immediately proved.

Let c be the root of the equation

a+x=b

which exists because of Condition IV; hence,

a+c=b

We now add to both sides of equation (1) the element c, which
does not violate the equality due to the uniqueness of the sum:

(a + 0a) + c = a + c

The right-hand side of this equation equals b, and the left-hand
side, due to Conditions I and II, equals b + Oa. Therefore,

b + O, = b

Comparing this to equation (2) and remembering that according to
IV there exists only one solution of the equation b + x = b, we
finally reach the equality
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This now proves that in any field P there is a zero element,
i. e. such an element 0 that for all a in P the equality

a+O=a

holds and therefore Condition V becomes completely meaningful.
We already have three examples of fields - the field of rational

numbers, that of real numbers, and that of complex numbers­
while the sets of all integers and of positive real numbers do not
constitute fields. Besides these three, an infinite number of other
fields exist. For instance, many different fields are contained within
the fields of real numbers and of complex numbers; these are the
so-called numerical fields. In addition some fields are larger than
that of complex numbers. The elements of these fields are no longer
called numbers, but the fieldsformed by them are used in mathematical
research. Here is one example of such a field.

Let us consider all possible polynomials

f( ) n + n-l + + +x = aox alx ... an-IX an

with arbitrary complex coefficients and of arbitrary degrees; for
instance, zero-degree polynomials will be represented by complex
numbers themselves. Even if we add, subtract and multiply
polynomials with complex coefficients by the rules we already know,
we still will not obtain a· field, since division of a polynomial by
another polynomial with no remainder is not always possible.

Now let us consider ratios of polynomials

f(x)
g(x)

or rational functions with complex coefficients, and let us agree
to treat them in the way we treat fractions. Thus,

f(x) <p (x)
g(x) \}1(x)

if and only if

f(x) \}1 (x) = 9 (x) <p (x)

Then,

f(x) + u(x) = f(x) v(x) ± 9 (x)u (x)
g(x)- v(x) g(x)v(x)

f(x) u(x) f(x) u(x)
g(x) . v(x) = g(x)v(x)
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The role of zero is played by fractions whose numerator is equal
to zero, i. e. fractions of the type

o
g(~)

Obviously, all fractions of this type are equal to one another.

Finally, if a fraction ~~~ does not equal zero, i. e. u(x) # 0,

then
f(x) u (x) f(x) v(x)
g(x) : v(x) = g(x)u(x)

It can easily be checked that the above operations with rational
functions satisfy all the requirements of the definition of a field,
so that we can speak of a field of rational functions with complex
coefficients. The field of complex numbers is totally contained in
this field, since a rational function whose numerator and denominator
are zero-degree polynomials is simply a complex number, and any
complex number can be presented in this form.

One should not think that any field is either contained in the
field of complex numbers or contains it within itself: some of the
different fields consist only of a finite number of elements.

Whenever fields are used, we have to consider equations with
coefficients from these fields, and inevitably the existence of roots
of such equations poses a problem. Thus, in some problems of
geometry we encountered equations with coefficients from the field
of rational functions; the roots' of these equations are called
algebraicfunctions. As applied to equations with numerical coefficients,
the basic theorem of higher algebra can no. longer be used for
equations with coefficients from an arbitrary field and is replaced
by the following general theorems.

Let P be some field and let

aoxn + alx
n

-
l + ... + an-lX + an = 0

be an equation of degree n with coefficients from this field. It
turns out that this equation cannot have more than n roots
either in the field P or in any other greater field. At the same
time the field P can be enlarged toa field Q in which our
equation will have n roots (some of which may be multiple). Even
the following theorem holds: J

Any field P can be enlarged to such a field P that any equation

with coefficientsfrom P or evenfrom Phave roots in P, and the number
of roots is equal to the degree of the equation.
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This field P is called algebraically closed. The basic theorem
of higher algebra shows that the field of complex numbers belongs
to the set of algebraically closed fields.

8. Conclusion

Throughout this booklet we always discussed equations of a
certain degree with one variable. The study of first-degree equations
is followed by that of quadratic equations in elementary algebra.
In addition elementary algebra proceeds from a study of one
first-degree equation with one variable to a system of two first-degree
equations with two variables and a system of three equations with
three variables. A university course in higher algebra continues
these trends and teaches the methods for solving -any system of
n first-degree equations with n variables, and also the methods of
solving such systems of first-degree equations in which the number
of equations is not equal to the number of variables. The theory
of systems of first-degree equations and some related theories
including the theory of matrices, constitute one special branch of
algebra, viz. linear algebra, which is widely used in geometry
and other areas of mathematics, as well as in physics and theoretical
mechanics.

It must be remembered, that at present both the theory of
algebraic equations and linear algebra are to a large extent parts
of science. Because of the requirements of adjacent branches of
mathematics anQ physics, the study of sets, in which algebraic
operations are defined, is most important. Aside from the theory .of
fields, which includes the theory of algebraic numbers and algebraic
functions, the theory of rings is being currently developed. A ring
is a set with operations of addition and multiplication, in which
Conditions I-IV from the definition of a field are valid; the set
of all integers may be cited as an example. We already mentioned
another very significant branch of algebra, the group theory. A group
is a set with. one algebraic operation, multiplication, which must
be associative; division, must be carried out without restrictions.

We often encounter noncommutatite algebraic operations, i. e. ones
in which the product is changed by commutation of co-factors,
and sometimes nonassociatioe operations, i. e. those in which the
product of three factors depends on the location of brackets. Those
groups which are used to solve equations in radicals are noncommu­
tative.

35



Systematic presentation of the fundamentals of the theory of
algebraic equations and of linear algebra can be found in textbooks
on higher algebra. The following textbooks are most frequently
recommended:

A. G. Kurosh, Higher Algebra, Mir Publishers, 1975 (in English).
L. Va. Okunev, Higher Algebra, "Prosveshchenie", 1966 (in

Russian).
An elementary presentation of the simplest properties of rings

and fields, mostly numerical, can be found in:
I. V. Proskuryakov, Numbers and Polynomials, "Prosveshchenie",

1965 (in Russian). .
An acquaintance with group· theory may begin with:
P. S. Aleksandrov, Introduction to Group Theory, "Uchpedgiz",

1951 (in Russian).
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