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Introduction

The aim of this presentation

Study convergence rate of a simple pattern search method

Decock Inria

Linear Convergence of Evolution Strategieswith Derandomized Sampling



3

Introduction Framework Theorem and proof Application to quadratic functions Conclusion

Introduction

Convergence of evolutionary algorithms
Proofs are almost always for (quasi-)convex objective functions

Non quasi-convex objective functions

I some proofs for convergence (asymptotically the optimum is found)

I few for linear convergence (precision O
(
e−Ω(n)

)
after n iterations)

I in discrete space
I not in continuous space
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Introduction

Our contribution

I Prove the linear convergence of an algorithm
I on non quasi-convex functions
I on continuous domains

I Under some assumptions about
I the sampling performed by the algorithm
I the “conditioning” of the objective function
I the unicity of the optimum
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Framework

Framework
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Framework

Algorithm

Initialize x ∈ IRd

Parameters k ∈ N∗, δ1, . . . , δk ∈ IRd , σ ∈ IR∗+, k1 ∈ N∗, k2 ∈ N∗
for t = 1, 2, 3, . . . do

// mutations
For i ∈ [[1, k]], xi ← x + σδi

// useful auxiliary variables
n← number of xi such that f (xi ) < f (x)
x′ ← xi with i ∈ [[1, k]] such that f (xi ) is minimum

. . .

end for
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Framework

Algorithm

Initialize x ∈ IRd

Parameters k ∈ N∗, δ1, . . . , δk ∈ IRd , σ ∈ IR∗+, k1 ∈ N∗, k2 ∈ N∗
for t = 1, 2, 3, . . . do

. . .
// step-size adaptation
if n ≤ k1 then
σ ← σ/2

end if
if n ≥ k2 then
σ ← 2σ

end if
. . .

end for
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Framework

Algorithm

Initialize x ∈ IRd

Parameters k ∈ N∗, δ1, . . . , δk ∈ IRd , σ ∈ IR∗+, k1 ∈ N∗, k2 ∈ N∗
for t = 1, 2, 3, . . . do

. . .

// win: accepted mutation
if k1 < n < k2 then

x← x′

end if

end for
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Framework

Assumptions
Objective function

The objective function f is unimodal

The considered algorithms are invariant by translation or
composition with increasing functions, therefore we can state that

I x∗ = 0 is the optimum

I f (x∗) = 0
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Framework

Assumptions
Conditioning of f

Conditioning of f : ∃K ′ > 0, ∃K ′′ > 0 s.t. ∀x ∈ IRd

K ′||x|| ≤ f (x) ≤ K ′′||x||

This assumption is not so strong as a constraint and in fact,
quadratic positive definite forms with bounded condition number
are covered

Decock Inria

Linear Convergence of Evolution Strategieswith Derandomized Sampling



12

Introduction Framework Theorem and proof Application to quadratic functions Conclusion

Framework

Assumptions
Deterministic sampling of the algorithm

The sampling of the algorithm is deterministic (like in pattern
search methods)

I mutation vectors δi are constant

I the evolution of the step size parameter σ is deterministic

Decock Inria

Linear Convergence of Evolution Strategieswith Derandomized Sampling



13

Introduction Framework Theorem and proof Application to quadratic functions Conclusion

Framework

Assumptions
Regular sampling of the algorithm

We assume ∃b, b′, c ′, c , η s.t.
0 < b < b′ ≤ 2b′ ≤ c ′ ≤ c , 0 < η < 1, ∀x ∈ IRd

σ ≥ b−1||x|| ⇒ n ≤ k1 (σ too large) (1)

σ ≤ b′−1||x|| ⇒ n > k1 (σ small enough) (2)

σ ≥ c ′−1||x|| ⇒ n < k2 (σ large enough) (3)

σ ≤ c−1||x|| ⇒ n ≥ k2 (σ too small) (4)

b′
−1||x|| ≤ σ ≤ c ′

−1||x|| ⇒ ∃i ∈ [[1, k]]; f (xi ) ≤ ηf (x) (5)

with n := #{i ∈ [[1, k]]; f (x + σδi ) < f (x)}
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Theorem

Theorem
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Theorem

Preliminary work

Define l = ln
(
||x||
σ

)
. Eqs. 1-5 can be rephrased as follows:

l ≤ ln(b) ⇒ n ≤ k1 (σ too large) (6)

l ≥ ln(b′) ⇒ n > k1 (σ small enough) (7)

l ≤ ln(c ′) ⇒ n < k2 (σ large enough) (8)

l ≥ ln(c) ⇒ n ≥ k2 (σ too small) (9)

ln(b′) ≤ l ≤ ln(c ′) ⇒ ∃i ∈ [[1, k]]; f (x + σδi ) ≤ ηf (x) (10)

with n := #{i ∈ [[1, k]]; f (x + σδi ) < f (x)}
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Theorem

Preliminary work

B

B

A

C

C
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Theorem

Preliminary work
Forced increase

Forced increase
if l ≤ ln(b), then

I n ≤ k1

I σ is divided by 2

I l is increased by ln(2) (Eq. 6)

This is a case C at the bottom in
the figure

B

B

A

C

C
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Theorem

Preliminary work
Forced decrease

Forced decrease
if l ≥ ln(c), then

I n ≥ k2

I σ is multiplied by 2

I l is decreased by ln(2) (Eq. 9)

This is a case C at the top in the
figure

B

B

A

C
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Theorem

Preliminary work
Forced win

Forced win
if ln(b′) ≤ l ≤ ln(c ′), then

I this is the “sure win” case
(Eq. 10)

I x← x′ (x′ is the best xi )

I l can be

I increased
(at most by maxi ||δi ||) or

I decreased
(by ∆ = ln

(
||x||
||x′||

)
)

This is a case A in the figure

B

B

A

C

C
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Theorem

Preliminary work
Uncertain outcome

Uncertain outcome
if ln(b) ≤ l ≤ ln(b′) or ln(c) ≤ l ≤ ln(c ′), then

I the iteration can be an improvement or not

I if not, the point is moved towards case A with steps of ln(2)

I if there’s no “win” case, then in the mean time l will arrive
between ln(b′) and ln(c ′), where a win is ensured

This is a case B in the previous figure
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Theorem

Theorem

There exists a constant K , depending on η,K ′,K ′′,maxi ||δi || only
such that for index t large enough

ln(||Xt ||)
t

≤ K < 0

where Xt is the tested solution x at iteration t
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Theorem

Proof
Step 1

Showing that there are infinitely many wins

1. l is increased or decreased when it is too low or too high
I the algorithm eventually brings l to the “win” range

2. l can be increased or decreased at most by ln(2) and
b′ ≤ 2b′ ≤ c ′

I the algorithm can not jump over the “win” range

This ensures that infinitely often we have a “win” : x← x′
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Theorem

Proof
Step 2

Showing that “wins” are big enough
“Win” case implies

I f (x′) ≤ ηf (x)

I f (x′) ≤ K ′′||x′|| ≤ K ′′

K ′
||x′||
||x|| f (x)

so that ln(f (x)) is decreased by at least

max

(
ln

(
1

η

)
, ln

(
K ′

K ′′

)
+ ln

(
||x||
||x′||

))
(11)
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Theorem

Proof
Step 2

Showing that the number of steps between two “wins” is low
enough
After a “win”, the number of iterations to the next “win” is

I at most z = 1 + ln( c
b ) ∆

ln(2) if l ′ ≤ ln(b′)

I at most z = 1 + maxi ||δi ||
ln(2) if l ′ ≥ ln(c ′)

I less than both cases above otherwise

with l ′ = ln
(
||x′||
σ

)
and ∆ = ln

(
||x||
||x′||

)
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Theorem

Proof
Step 2

Progress rate
Eq. 11 divided by z is lower bounded by some positive constant

ProgressRate = Eq. 11 divided by z

=
max

(
ln
(

1
η

)
, ln

(
K ′

K ′′

)
+ ∆

)
min

(
1 + ln

(
c
b

)
∆

ln(2)
, 1 +

maxj ‖|δj ||
ln(2)

)
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Theorem

Proof
Step 3

Summing iterations
Hence if t > n0,

ln(f (Xt)) ≤ ln(f (X1))− (t − n0)×

∑
i

max
(

ln
(

1
η

)
, ln

(
K ′

K ′′

)
+ ∆

)
min

(
1 + ln( c

b ) ∆
ln(2) , 1 +

maxj ||δj ||
ln(2)

)
where :

I summation is for i index of an iteration t with a “win”

I n0 is the number of initial iterations before a “win”
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Application to quadratic functions

Application to quadratic functions
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Application to quadratic functions

Application to quadratic functions

Considered family of objective functions

f is quadratic positive definite objective functions such that

maxEigenValue(Hessian(f ))

minEigenValue(Hessian(f ))
< cmax <∞

Consider Q a positive definite quadratic form with optimum in 0

We work on x 7→
√
Q(x− x∗) instead of x 7→ Q(x− x∗) so that

the first assumption is verified:

K ′||x|| ≤ f (x) ≤ K ′′||x||

∀x ∈ IRd , ∃K ′ > 0, ∃K ′′ > 0
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Application to quadratic functions

Application to quadratic functions
Assumptions to verify (reminder)

We try to prove that f respects the following assumptions
∃b, b′, c ′, c , η s.t. 0 < b < b′ ≤ 2b′ ≤ c ′ ≤ c , 0 < η < 1, ∀x ∈ IRd

σ ≥ b−1||x|| ⇒ n ≤ k1 (σ too large)

σ ≤ b′−1||x|| ⇒ n > k1 (σ small enough)

σ ≥ c ′−1||x|| ⇒ n < k2 (σ large enough)

σ ≤ c−1||x|| ⇒ n ≥ k2 (σ too small)

b′
−1||x|| ≤ σ ≤ c ′

−1||x|| ⇒ ∃i ∈ [[1, k]]; f (xi ) ≤ ηf (x)

with n := #{i ∈ [[1, k]]; f (x + σδi ) < f (x)}
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Application to quadratic functions

Application to quadratic functions

We note:

I p = px,σ,f the probability that x + σδi is in E = f −1([0, f (x)[)

I p̂ = p̂x,σ,f the frequency 1
k

∑k
i=1 1x+σδi∈E

The previous assumptions essentially mean that frequencies are
close to expectations for

I x + σδi ∈ f −1([0, f (x)[)

I x + σδi ∈ f −1([0, ηf (x)[)

uniformly in x, σ, f .
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Application to quadratic functions

Corollary
Application of the main theorem to quadratic forms

Assume that the δi are uniformly randomly drawn in the unit ball B(0, 1).

Assume that F is the set of quadratic functions with minimum in 0
(f (0) = 0) as defined before.

Then, almost surely on the sequence δ1, δ2, . . . , δk , for k large enough
and some parameters k1 and k2 of our evolutionary algorithm,
then assumptions hold, and therefore for some K < 0, for all t > 0,

ln(||Xt ||)
t

≤ K

where Xt is the tested solution x at iteration t
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Application to quadratic functions

Proof
Step 1

Using VC-dimension for approximating expectations by
frequencies

The finiteness of the VC-dimension of quadratic forms state that
for all ε > 0, almost surely in δ1, δ2, . . . , δk , for all δ > 0 and k
sufficiently large, with probability at least 1− δ,

sup
x,f ,σ>0

|p̂x,σ,f − px,σ,f | ≤ ε/2

where x ranges over the domain, f ranges over F
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Application to quadratic functions

Proof
Step 2

Showing that small σ leads to high acceptance rate and high σ
leads to small acceptance rate

Thanks to the bounded conditioning, there exists ε > 0 s.t.

s ′ <
1

2
s

with s = sup

{
σ

||x||
;σ, x, f s.t. p ≥ ε

2

}
and s ′ = inf

{
σ

||x||
;σ, x, f s.t. p <

1

2
− ε

2

}
Indeed s ′ → 0 and s →∞ as ε→ 0.
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Application to quadratic functions

Proof
Step 2

Showing that small σ leads to high acceptance rate and high σ
leads to small acceptance rate

The previous equations provide k1, k2, c ′ and b′

1

b′
= sup

{
σ

||x||
;σ, x, f s.t. p̂ ≥ ε

}
1

c ′
= inf

{
σ

||x||
;σ, x, f s.t. p̂ <

1

2
− ε
}

k1 = bεkc

k2 =

⌈
(

1

2
− ε)k

⌉
Equations above imply c ′ ≥ 2b′
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Application to quadratic functions

Proof
Step 3

Showing that k large enough and σ well chosen leads to at
least one mutation with significant improvement

Similarly, k large enough yield

b−1 = sup

{
σ

||x||
;σ, x, f s.t. p̂ > k1/k

}
c−1 = inf

{
σ

||x||
;σ, x, f s.t. p̂ < k2/k

}
which provide Eqs. 4 and 1 with b < c .
Eqs. 1-4 then imply b < b′ and c ′ < c .
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Application to quadratic functions

Proof
Step 3

Showing that k large enough and σ well chosen leads to at
least one mutation with significant improvement

We now have to ensure the last assumption:

b′
−1||x|| ≤ σ ≤ c ′

−1||x|| ⇒ ∃i ∈ [[1, k]]; f (x + σδi ) ≤ ηf (x)

For now on, we note:

I q = qx,σ,f the probability that x + σδi is in
E ′ = f −1([0, ηf (x)[)

I q̂ = q̂x,σ,f the frequency 1
k

∑k
i=1 1x+σδi∈E ′
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Application to quadratic functions

Proof
Step 3

Showing that k large enough and σ well chosen leads to at
least one mutation with significant improvement

Lets us assume
b−1 ≤ σ

||x||
≤ c−1

this implies q > ε0 for some ε0 > 0

For k sufficiently large for ensuring supσ,x,f |qx,σ,f − q̂x,σ,f | ≤ ε0/2,
by VC-dimension, we get q′ ≥ ε0/2 > 0

This implies that at least one δi verifies x + δi ∈ E ′.
This is the last assumption.
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Application to quadratic functions

Proof
Step 4

Concluding

We have shown our assumptions for square roots of positive
definite quadratic normal forms with bounded conditioning.
Therefore, the main theorem can be applied and leads to

ln(||Xt ||)
t

≤ K < 0
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Conclusion

Conclusion
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Conclusion

Conclusion

This is the first proof of linear convergence of an evolutionary
algorithm in continuous domains on non quasi-convex functions.

Even the application to quadratic positive definite forms is new.
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Conclusion

Future work

I Evaluate the convergence rate as a function of condition
numbers

I Extend results to randomized algorithms
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Conclusion

Thank you for your attention

Questions ?
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Appendix

Theorem’s proof
Step 2

(11) ⇐⇒ ln

(
f (x)

f (x′)

)
≥ max

(
ln

(
1

η

)
, ln

(
K ′

K ′′

)
+ ln

(
||x||
||x′||

))

f (x′) ≤ ηf (x) ⇐⇒
1

η
f (x′) ≤ f (x)

⇐⇒
1

η
≤

f (x)

f (x′)

⇐⇒ ln

(
f (x)

f (x′)

)
≥ ln

(
1

η

)

f (x′) ≤
K ′′

K ′
||x′||
||x||

f (x) ⇐⇒ f (x′)
K ′

K ′′
||x||
||x′||

≤ f (x)

⇐⇒
K ′

K ′′
||x||
||x′||

≤
f (x)

f (x′)

⇐⇒ ln

(
K ′

K ′′
||x||
||x′||

)
≤ ln

(
f (x)

f (x′)

)

⇐⇒ ln

(
f (x)

f (x′)

)
≥ ln

(
K ′

K ′′

)
+ ln

(
||x||
||x′||

)
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Theorem’s proof
Step 2

if l′ ≥ ln(c′) then

I l < ln(c) (otherwise it couldn’t be a “win”)

l′ − ln(c′) ≤ ln(c + max
i
||δi ||)− ln(c′)

≤ ln(c) + ln(1 + max
i
||δi ||/c)− ln(c′)

≤ ln(c/c′) + max
i
||δi ||/c

≤ max
i
||δi ||/c

l′ − ln(c′) = ln(
||x + σδi ||

σ
)− ln(c′) ≤ ln(

||x||
σ

+ δi )− ln(c′)

≤ ln(c ∗ (1 +
δi

c
))− ln(c′)

≤ ln(c) + ln(1 + max
i
||δi ||/c)− ln(c′)

≤ ln(c/c′) + max
i
||δi ||/c

≤ max
i
||δi ||/c

Decock Inria

Linear Convergence of Evolution Strategieswith Derandomized Sampling



45

Appendix

Theorem’s Proof
Step 3

Summing iterations
Hence if t > n0,

ln(f (Xt )) ≤ ln(f (X1))− (t − n0)×
∑
i

max
(

ln
(

1
η

)
, ln

(
K′
K′′
)

+ ∆
)

min

(
1 + ln( c

b
) ∆

ln(2)
, 1 + ln( c

b
)

maxj ln(||δj ||)

ln(2)

)
⇐⇒ ln(f (Xt ))− ln(f (X1)) ≤ −(t − n0)× C

⇐⇒
ln
(

f (Xt )
f (X1)

)
t − n0

≤ −C

⇒
ln(||Xt ||)

t
≤ K < 0 (theorem)

with C a positive constant.
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Corollary’s proof
Step 2 (1/4)

Step 2: showing that σ small leads to high acceptance rate and σ high
leads to small acceptance rate.
Thanks to the bounded conditioning, there exists ε > 0 s.t.

s ′ <
1

2
s (12)

with s = sup

{
σ

||x||
;σ, x, f s.t. p ≥ ε

2

}
and s ′ = inf

{
σ

||x||
;σ, x, f s.t. p <

1

2
− ε

2

}
because s ′ → 0 and s →∞ as ε→ 0.
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Corollary’s proof
Step 2 (2/4)

Notes

ŝ = sup

{
σ

||x||
;σ, x, f s.t. p̂ ≥ ε

}
ŝ ′ = inf

{
σ

||x||
;σ, x, f s.t. p̂ <

1

2
− ε
}

Then
sup

x,f ,σ>0
|p̂ − p| ≤ ε/2

implies
1

2
ŝ ≥ 1

2
s and s ′ ≥ ŝ ′
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Corollary’s proof
Step 2 (3/4)

So

ŝ ′ ≤ s ′ <
1

2
s ≤ 1

2
ŝ

and

ŝ ′ ≤ 1

2
ŝ
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Corollary’s proof
Step 2 (4/4)

This provides k1, k2, c ′ and b′ as follows for Eqs. 3 and 2:

1

b′
= ŝ = sup

{
σ

||x||
;σ, x, f s.t. p̂ ≥ ε

}
1

c ′
= ŝ ′ = inf

{
σ

||x||
;σ, x, f s.t. p̂ <

1

2
− ε
}

k1 = bεkc

k2 =

⌈
(

1

2
− ε)k

⌉
Eqs. above imply c ′ ≥ 2b′
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Corollary’s proof
Step 3

k large enough yield

b−1 = sup

{
σ

||x||
;σ, x, f s.t. p̂ > k1/k

}
,

c−1 = inf

{
σ

||x||
;σ, x, f s.t. p̂ < k2/k

}
,

which provide assumptions 2 and 5 with b < c

Assumptions 2 and 5 then imply b < b′ and c ′ < c
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Non quasi-convex functions
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